ESTABLISHMENT OF READILY MATHEMATICAL FORMULATION FOR THE EVALUATION OF SLOPE STABILITY IN EARTH-FILL DAMS

Majda Ibobakr Almhdi Amer and Salah H. A. Saleh*

Faculty of Science, University of Zintan, Zintan, Libya *Faculty of Engineering, University of Tripoli, Tripoli, Libya E-mail: salah.saleh@uot.edu.ly

Received 8 March 2023, revised 11 June 2023, accepted 9 August 2023

الملخص

يعتبر تقييم استقر اريه الميل من أهم المسائل الشائعة التي يتعامل معها المهندسون الجبو تقنبون. و هذا ناتج من كمية الضرر الذي من الممكن أن يحدثه انهيار المبل لكتل التربة للطرق المرورية، خطوط السكك الحديدية و السدود التر ابية على سبيل المثال. و بالتالي فإن استقر اريه كتل التربة المائلة يجب أن تحلل بعناية قبل و أثناء وبعد تنفيذ هذا النوع من المنشآت. بناء على أهمية مسألة استقراريه الميل، تم اقتراح عدد من البدائل لطرق تقييم استقراريه الميل. بشكل عام، فإنه يمكن تقسيم هذه الطرق إلى نوعين رئيسيين: طرق الاتزان الحدية (LEM) وطرق العناصر المحددة. طرق الأتزان الحدية تعتبر محدودة من ناحية: 1) عدم وجود استمرارية بين الشرائح المتجاورة؛ 2) عدم تساوى قوى الشرائح البينية؛ 3) ضرورة إيجاد ميل القاعدة لكل شريحة على حدة. وهذا يتطلب عدد كبير من الشرائح لتمثيل سطح الانزلاق بدقة والذي يعتبر حسابيا استهلاكا للوقت. الغرض من هذه الدراسة تطوير نموذج رياضي لحل المسائل المذكورة ويعطى أفضل تمثيل لسطح الانزلاق المنحني. تم تطوير صيغة رياضية دقيقة بناء على مبدأ الشرائط متناهية الصغر. في حالة طرق الاتزانُ الحدية، يتم تقسيم كتلة التربة إلى مجموعة من الشرائح بحيث تحقق كل شرَّيحة شروط اتزان القوى و/أو عزوم هذه القوى. ولكي تكون نتائج هذه الطرق دقيقة، فإنها تصبح حسابيا مستهلكة للوقت نظرا للعدد الهائل من الشرائح المطلوب تحليلها. في هذه الورقة، تم تقديم صيغة رياضية جاهزة دقيقة وسريعة يمكنها حساب محصلة القوى المؤثرة على الميل فقط باستخدام الأبعاد الهندسية للسطح المنزلق للميل ودون الحاجة إلى استخدام الشرائح. الصيغة الجديدة تعتمد فقط على الشكل الهندسي لسطح الانز لاق، ألغت الحاجة إلى الشر أنح، حققت مبدأ الاستمر ارية لميل القاعدة والقوى البينية بين الشرائح. بالمقارنة مع مجموعات مختلفة للشرائح، الصيغة الجديدة تفوقت على طريقة الشر ائح من حيث الدقة و الكفاءة.

ABSTRACT

The assessment of slope stability has been considered to be one of the most common issues to deal with by geotechnical engineers. This is due to the amount of destruction that can be brought up by the slope failure of soil masses to roads, railways, and earth dams, for example. Therefore, the stability of soil mass slopes must be carefully analysed prior to, during and after the construction of such a structure. Depending on the importance of slope stability problem, a number of alternative methods have been proposed for the evaluation of slope safety. These can generally be divided into two main types: limit equilibrium methods and finite element methods. In limit equilibrium methods (LEM), the soil mass is subdivided into a set of slices with straight base where each slice must fulfil the equilibrium conditions of forces and/or moments. LEM's have three main limitations: 1) slope discontinuity between adjacent slices; 2) unequal interslice forces; and 3) the requirement of determining base slope for each individual slice. Accordingly, a large number of slices are needed to accurately represent the curved slip surface, which is computationally time consuming. The purpose of this study is to develop a mathematical approach that addresses the aforementioned issues and best represents the curved slip surface. A fast and accurate mathematical formulation that uses the principle of infinitesimal strips was developed. The new formulation only dependent on the geometrics of slip surface, which are readily available once the slip surface is assumed, eliminated the need of slicing, and satisfied the base slope and inter-slice force continuities. Compared with different sets of slices, the new formulation outperformed the ordinary method of slices in terms of accuracy and efficiency.

KEYWORDS: Infinitesimal Slices; Mathematical Formulation; Slope Stability, limit Equilibrium; Earth-Fill Dam.

INTRODUCTION

The slope stability of soil materials represents an essential design aspect a geotechnical engineer has to deal with in several civil engineering structures such as earth-fill dams, road and railway embankments. As most soils exhibit two types of shear resistance forces, namely cohesion and friction, the slip failure surface approximately tends to be rotational and the shape approximates to the arc of a circle. Since there is a large number of failure surfaces for a given slope, a trial search procedure is required to detect the critical slip surface in which the slope safety is at the minimum value. The limit equilibrium slicing method is the most widely used approach by researchers of slope stability because of its well-established and conventional nature [1-7]. This approach divides the soil into a set of slices and then each slice must fulfil equilibrium conditions of either forces or moments or both of them. The factor of safety is calculated by comparing shear strength along the sliding surface and the required force that can keep the slope in equilibrium.

Clearly, the accuracy of the slicing method is highly dependent on the number of slices making up the slip surface. This is because the base of each slice is assumed to be a straight line, which is not the case in the curved slip surface. The aforementioned assumption has the effect of underestimating the weights of slices, which in turn will underestimate the force components resolved from such weights. In order to eliminate the error in slice weights, a large number of slices is required but this will be at the cost of computational complexity and effort.

In this paper, a fast and accurate mathematical formulation that calculates all forces incorporated into the slope stability analysis without the need of slicing of the slip surface is presented. Instead of analysing each slice individually, the new approach simply uses the principle of infinitesimal strips to exactly calculate the area under curves and the tangential slopes of curves. The exact representation of both the area and the slope of the slip surface means that the weight of the slip surface and the directions of weight components are accurately determined. The main goal of this research is in the derived general formulae that is based on addressing the issue of continuity between inter-slice forces and exactly calculates the weight, normal force and tangential force of the whole slip surface in one step. Once the trial surface is available, the derived formulae require just the geometrics of the surface in order to evaluate all surface forces. To demonstrate the performance of the proposed formulation, it was applied to a slip surface problem and compared to the ordinary slicing method using different sets of slices. While the new approach readily and exactly calculates the resultant tangential and normal forces along the slip surface, the slicing method required hundreds of slices to converge to the exact

forces. This has been carried out by gradually increasing the number of slices and comparing the results with the new approach.

The significance of the proposed approach stems from its potential applicability in geotechnical software packages that use finite element methods, which still incorporate stepping analysis procedures. These tools normally start the analysis with a trial slip surface, which can be picked up by the proposed approach, extracting the dimensions, and instantly and accurately calculating the forces along the slip surface.

DEVELOPMENT OF THE METHOD OF SLICES

The assessment of slope stability is still a challenging and crucial element of geotechnical engineering. There are different computing ways developed to evaluate the safety of slope stability. These, for example, include limit equilibrium methods, finite element methods, finite difference methods, and discrete element methods. Amongst the aforementioned methods, the limit equilibrium methods are considered the most common and practical method used in analysing and predicting the stability of slopes. They are simply based on calculating a single factor of safety determined by the equilibrium between shear stress and shear strength. The slope is considered stable when the factor of safety is greater than unity, which suggests that the forces resisting the slope failure are greater than those driving the failure. When the slope undergoes complex failure mechanisms such as internal deformations or liquefaction processes, more advanced numerical and finite element based models should be used.

Since all slope stability analysis methods share the concept of the critical slip surface, which is the surface with the minimum factor of safety, the search of the critical surface starts with a trial surface and then an optimization technique is incorporated until a convergence towards the minimum factor of safety is achieved. Once the trial surface is available, the shear strength along the sliding surface is determined using the Mohr-Coulomb expression in all limit equilibrium methods. The shear strength of the soil is defined as the shear stress at which a soil fails in shear. In short term conditions, the zero friction approach is used in determining the shear strength while, in long term conditions, the non-zero friction approach is used. Since the slip surface might pass through different materials such as in zoned earth dams, which means that the angle of shearing resistance is no longer constant, subdividing the slip surface into vertical slices is more appropriate in this situation.

The first method of slices [1] referred to as the Ordinary method of slices or the Swedish method was introduced for the analysis of circular slip surfaces. This method is based on a linear relationship for the factor of safety (FOS). A new relationship for the base normal force with a non-linear equation for FOS was introduced to improve the first method [2]. For non-circular failure surfaces, a simplified method was developed by dividing a potential sliding mass into several vertical slices [3]. A further development of the simplified method while developing the generalised procedure of slices was made [8]. The introduction of the inter-slice forces using different assumptions added further contributions to the previous developed as an extension of the different assumptions in [4-5,9] based on satisfying both moment and force equilibrium conditions. However, all the above-mentioned developments still require calculating the contributions to resisting and disturbing forces by each slice separately in order to calculate FOS. To date, no general procedure developed for limit equilibrium methods capable of calculating FOS without the need of slicing is available in the literature.

REVIEW OF SOME OF LIMIT EQUILIBRIUM SLICE METHODS

The Ordinary method (OM) of slices [1] is based on satisfying the moment equilibrium for a circular slip surface but it neglects both the inter-slice normal and shear forces. The advantage of this method is that the equation of the FOS is solved directly and does not require an iteration process as follows:

$$FOS = \frac{\sum_{i=1}^{m} c \,\Delta L_i + \tan \phi \sum_{i=1}^{m} w_i \cos \alpha_i}{\sum_{i=1}^{m} w_i \sin \alpha_i} \tag{1}$$

Where, $c = \text{soil cohesion in KN/m}^2$, $\Delta L_i = \text{base length of slice } i \text{ in m}$, $\phi = \text{angle of shearing resistance in degrees}$, $w_i = \text{weight of slice } i \text{ in KN/m}$, $\alpha_i = \text{angle of inclination of slice base to the horizontal in degrees}$, m = number of slices making up the slip surface. Eq. (1) produces less values of FOS than those yielded by more accurate and advanced methods.

Bishop's simplified method (BSM) differs from OM in that it resolves forces in the vertical direction instead of a direction normal to the slip surface. In this way, the interslice normal forces are considered in the calculations but still neglecting the inter-slice shear forces. BSM is more common in practice for circular shear surfaces because it produces higher values of FOS than those obtained from OM and very close to those obtained from more refined methods. The simplified analysis of this method results in:

$$FOS = \frac{\sum_{i=1}^{m} \left[(c \,\Delta L_i + \tan \phi w_i \cos \alpha_i) \, M_a^{-1} \right]}{\sum_{i=1}^{m} w_i \sin \alpha_i} \tag{2}$$

Where,

$$M_a = \cos \alpha_i + \frac{\tan \phi \sin \alpha_i}{FOS}$$
(3)

Clearly, solving Eq. (2) for the value of FOS requires iteration procedures because FOS appears on both sides of the equation. Therefore, computer programs are utilized to solve this equation using numerical methods. Janbu's simplified method or JSM [3] was developed for composite slip surfaces based on resolving forces in the horizontal direction. The method is similar to BSM in that it considers inter-slice normal forces but neglects the shear forces. The base normal force is determined in the same way as in BSM and the FOS is computed as follows:

$$FOS = \frac{\sum_{i=1}^{m} [(c \,\Delta L_i + \tan \phi w_i \cos \alpha_i) \sec \alpha_i]}{\sum_{i=1}^{m} w_i \tan \alpha_i + \Delta E_i} \tag{4}$$

Where, $\Delta E_i = E_2 - E_1$ = net inter-slice normal forces for slice *i*.

To account for inter-slice shear forces, Janbu corrected JSM by introducing a correction factor that gives the lower range for cohesionless (friction only) soils and the higher range for cohesive or clayey soils. Janbu's generalized method or JGM [8] is the first method to consider the satisfaction of both force and moment equilibrium. The method takes into account the normal and shearing inter-slice forces by assuming a line of thrust in order to determine a relationship for inter-slice forces. The resulting equation for FOS is a complex function computed by:

$$FOS = \frac{\sum_{i=1}^{m} [(c \Delta L_i + \tan \phi w_i \cos \alpha_i) \sec \alpha_i]}{\sum_{i=1}^{m} (w_i - \Delta T_i) \tan \alpha_i + \Delta E_i}$$
(5)

Where, $\Delta E = T_i = T_2 - T_1$ = net inter-slice shearing forces for slice *i*. Lowe-Karafiath's method [13] computed the inter-slice resultant force by assuming its inclination as the average of the slope surface inclination (β) and the slice base inclination (α). Despite that the L-KM method considers both inter-slice normal and shear forces, it does satisfy the force equilibrium only. Similar to the L-KM method, the Corps of Engineers [14] method assumes the inter-slice force inclination in two ways: it can be assumed either parallel to the ground surface or equal to the average slope angle between the entry and exit points of the critical slip surface. Sarma [9] was the first to develop a method for a non-vertical slice or general blocks. This method satisfies both moment and force equilibrium in addition to relating the interslice forces by a quasi-shear equation. The Morgenstern-Price method [4] or M-PM suggests assuming a function for the interslice force of any type like half-sine, trapezoidal or user defined. For a given force function, an iteration procedure is required to compute the inter-slice forces. Spencer's method [5] is similar to M-PM but it differs in the assumption of constant inclination of inter-slice forces. Yet the above mentioned methods still employ discrete numerical analysis approaches as in [15-16].

Mathematical Formulation of the Proposed Approach

The main shortcoming of slice methods is the assumption that, for all slices, the resultant of inter-slice forces is inclined at an angle parallel to the base of the slice. This assumption does not satisfy inter-slice equilibrium because every adjacent slice has different base inclination angles. In addition, the assumption of a straight base underestimates the weight of each slice and consequently underestimates the tangential and normal forces. The only condition in which adjacent slices have similar inclination angles takes place when each slice has an infinitesimal width (dx), for which no method has been yet developed to date. This is the key to the development of the proposed approach, which eliminates the assumption of sloped soil embankment with side slope of H:B, in which H represents dam height and B represents the slope base length. A circular slip surface (AE) is defined by radius (r) and centre (O) located at coordinates (a, b) with respect to the origin at point (A). The slip surface is subdivided into an infinite number of infinitesimal slices each with width (dx), base length (ΔL) and base inclination angle (α) with the horizontal axis (X).

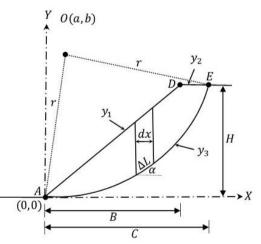


Figure 1: Geometrical representation of the variables defining the slip surface

Mathematically, the equations describing the boundaries of the slip surface can be written in terms of geometric dimensions of the embankment and the slip surface as follows:

$$y_1 = \frac{H}{B}x\tag{6}$$

$$y_2 = H \tag{7}$$

$$y_3 = b - \sqrt{r^2 - (x - a)^2} \tag{8}$$

If the embankment is made up of homogeneous soil with unit weight (γ_S), then the weight of the infinitesimal slice denoted with (dw) can be computed for part (A, D) by:

$$dw = \gamma_s \left(\frac{H}{B}x - b + \sqrt{r^2 - (x - a)^2}\right) dx \tag{9}$$

and for the part (D, E) by:

$$dw = \gamma_s \left(H - b + \sqrt{r^2 - (x - a)^2} \right) dx \tag{10}$$

The inclination of the infinitesimal slice base can be mathematically found from the definition of tangential slope (dy_3/dx) as follows:

$$\tan \alpha = \frac{(x-a)}{\sqrt{r^2 - (x-a)^2}}$$
(11)

From which the trigonometric expressions $\sin \alpha$ and $\cos \alpha$ can be written as:

$$\sin \alpha = \frac{(x-a)}{r} \tag{12}$$

$$\cos \alpha = \frac{\sqrt{r^2 - (x - a)^2}}{r} \tag{13}$$

The length of the infinitesimal slice base ($\Delta L = dx / \cos \alpha$) can be expressed by:

$$\Delta L = \frac{r}{\sqrt{r^2 - (x - a)^2}} dx \tag{14}$$

Now, the normal $(dN = dw \cos \alpha)$ and shear $(dT = dw \sin \alpha)$ forces at the base of the infinitesimal slice can be computed for part (A, D) by:

$$dN = \gamma_s \left(\frac{H}{B}x - b + \sqrt{r^2 - (x - a)^2}\right) \frac{\sqrt{r^2 - (x - a)^2}}{r} dx$$
(15)

$$dT = \gamma_s \left(\frac{H}{B}x - b + \sqrt{r^2 - (x - a)^2}\right) \frac{(x - a)}{r} dx$$
(16)

While for part (D, E) by:

$$dN = \gamma_s \left(H - b + \sqrt{r^2 - (x - a)^2} \right) \frac{\sqrt{r^2 - (x - a)^2}}{r} \, dx \tag{17}$$

$$dT = \gamma_s \left(H - b + \sqrt{r^2 - (x - a)^2} \right) \frac{(x - a)}{r} dx$$
(18)

The total weight of the slip surface $(W = \sum dw)$, total normal force $(N = \sum dN)$, total shear force $(T = \sum dT)$, and length of the slip surface $(L_a = \sum \Delta L)$ can be computed by:

$$W = \gamma_s \int_0^B \left(\frac{H}{B}x - b + \sqrt{r^2 - (x - a)^2}\right) dx + \gamma_s \int_B^C \left(H - b + \sqrt{r^2 - (x - a)^2}\right) dx$$
(19)

$$N = \gamma_s \int_0^B \left(\frac{H}{B}x - b + \sqrt{r^2 - (x - a)^2}\right) \frac{\sqrt{r^2 - (x - a)^2}}{r} \, dx + \gamma_s \int_B^C \left(H - b + \sqrt{r^2 - (x - a)^2}\right) \frac{\sqrt{r^2 - (x - a)^2}}{r} \, dx \tag{20}$$

$$T = \gamma_s \int_0^B \left(\frac{H}{B}x - b + \sqrt{r^2 - (x - a)^2}\right) \frac{(x - a)}{r} dx + \gamma_s \int_B^C \left(H - b + \sqrt{r^2 - (x - a)^2}\right) \frac{(x - a)}{r} dx$$
(21)

$$L_a = \int_0^C \frac{r}{\sqrt{r^2 - (x-a)^2}} \, dx \tag{22}$$

Equations (19) to (22) can be easily determined either numerically or mathematically using the basic rules of integration. For example, the resulting expression for (W) and (L_a) are

$$W = \gamma_s \left[\frac{HB}{2} - bB + H(C - B) - b(C - B) + \frac{a}{2}\sqrt{r^2 - a^2} + \frac{\pi r^2}{360}\sin^{-1}\frac{a}{r} + \frac{c - a}{2}\sqrt{r^2 - (C - a)^2} + \frac{\pi r^2}{360}\sin^{-1}\frac{c - a}{r} \right]$$
(23)

$$L_a = \frac{\pi r}{180} \left[\sin^{-1} \frac{c - a}{r} + \sin^{-1} \frac{a}{r} \right]$$
(24)

Similarly, the resulting expressions for (T) and (N) are:

$$T = \gamma_{S} \left[\frac{H}{Br} \left(\frac{B^{3}}{3} - \frac{aB^{2}}{2} \right) + \frac{1}{r} \left(\frac{(r^{2} - a^{2})^{\frac{3}{2}}}{3} \right) + \frac{H}{r} \left(\left(\frac{C^{2}}{2} - aC \right) - \left(\frac{B^{2}}{2} - aB \right) \right) - \frac{b}{r} \left(\frac{C^{2}}{2} - aC \right) - \frac{1}{r} \left(\frac{(r^{2} - (C - a)^{2})^{3/2}}{3} \right) \right]$$
(25)

$$N = \frac{H}{Br} \left[\frac{a(B-a)}{2} \sqrt{r^2 - (B-a)^2} + \frac{a\pi r^2}{360} \sin^{-1} \frac{B-a}{r} - \frac{(r^2 - (B-a)^2)^{3/2}}{3} + \frac{a^2}{2} \sqrt{r^2 - a^2} + \frac{a\pi r^2}{360} \sin^{-1} \frac{a}{r} - \frac{(r^2 - (B-a)^2)^{3/2}}{3} + \frac{a^2}{2} \sqrt{r^2 - a^2} + \frac{\pi r^2}{360} \sin^{-1} \frac{a}{r} \right] - \frac{a^3}{3r} + \frac{H}{r} \left[\frac{(C-a)}{2} \sqrt{r^2 - (C-a)^2} + \frac{\pi r^2}{360} \sin^{-1} \frac{C-a}{r} - \frac{(B-a)}{2} \sqrt{r^2 - (B-a)^2} - \frac{\pi r^2}{360} \sin^{-1} \frac{B-a}{r} \right] - \frac{b}{r} \left[\frac{(C-a)}{2} \sqrt{r^2 - (C-a)^2} + \frac{\pi r^2}{360} \sin^{-1} \frac{C-a}{r} \right] + rC - \frac{(C-a)^3}{3r}$$
(26)

Clearly, the above expressions (Eqs (23) to (26)) are dependent only on the geometrics of the embankment slope and the slip surface and do not require any calculations of slice forces, which are dependent on the dimensions and inclination angle for each slice. The proposed method directly and accurately calculates the total slice forces once the slip surface is available without the need of slicing the slip surface. This gives the advantage of calculating FOS directly from the geometrics of the slip surface. For example, no requirement for measuring the base inclination or calculating the slice forces or even calculating weights of slices.

Application Example

To demonstrate the performance of the proposed method, a soil embankment representing part of an earth dam is presented in Figure (2). The embankment is made up of homogeneous soil with unit weight of 20 KN/m^3 and cohesion of 10 KN/m^2 . The angle of shearing resistance of the soil is 29° . The embankment is in drained condition and so neglecting the effect of pore water pressure. The embankment slope has a height of 6 m and base length of 9 m. The slip surface has a radius of 9.447 m and starts from the toe and extends horizontally for a distance of 10.432 m to intersect with the embankment crest.

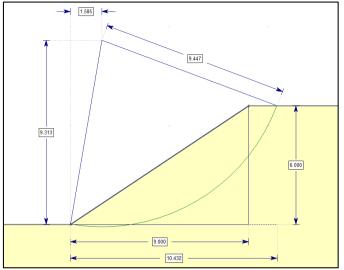


Figure 2: Application example (All dimensions are meters)

RESULTS AND DISCUSSION

The proposed method is applied using the geometrics of the slope, which gives the following slope properties: a = 1.585 m, b = 9.313 m, r = 9.447 m, B = 9 m, C = 10.432 m, and H = 6 m. These values are sufficient to calculate the total slip surface forces and evaluate the stability of the surface using the developed method. The resulting total shearing and normal slice forces were found directly from Eqs. (25) and (26) at 373.864 kN/m and 197.808 kN/m respectively, while the total weight and the length of the slip surface were calculated directly from Eqs. (23) and (24) at 442.039 KN/m and 13.046 m respectively. Accordingly, the value of FOS using Eq. (1) was 1.707.

In contrast, the results of applying OM using different sets of slices are shown in Table (1). A geotechnical software, namely SLIDE, was utilized to analyse the various cases of slicing using OM. Evidently, the method of slices underestimates the slice forces and it requires a large set of slices in order to converge to the exact values of forces. The underestimation of slip surface weight (W) means an underestimation of both the sliding force (T) and the resisting force (N). More importantly, the method of slices produces larger values of FOS if small sets of slices were used. This indicates that OM overestimates the safety indicator (FOS) in real problems. Besides, the method of slices needs to analyse each slice individually before summing up towards the total slice resultant forces. In other words, the computational effort is high because it incorporates a series of calculation procedures like sizing, calculation of base inclination, and force resolving for each slice. The developed method eliminates such procedures by applying a block analysis for the whole slip surface just using the geometric dimensions, which are readily available once the trial surface is provided.

Tuble 1. Results of shee forces using unter the sets of shees						
Number of slices	W(kN/m)	T(kN/m)	N(kN/m)	FOS		
5	422.913	356.329	186.17	1.759		
10	437.033	369.416	194.621	1.722		
20	440.768	372.744	196.992	1.711		
30	441.475	373.37	197.444	1.709		
40	441.724	373.588	197.604	1.708		

Table 1: Results of slice forces using different sets of slices

50	441.839	373.689	197.679	1.708
100	441.994	373.824	197.779	1.707
200	442.032	373.858	197.803	1.707
300	442.039	373.864	197.808	1.707

The novelty of the new formulation stems from the instant calculation of total slip surface forces by just reading the dimensions of the given surface. No incorporation of slices in any way and the formulation is an exact representation of the slip surface in terms of force analysis. The determination of slip surface forces in one go is actually a significant step in the context of slope stability analysis in earth-fill dams.

Figures (3a to 3c) show how the number of slices is related to the various slice properties. All of the relationships showed an agreement that more than 50 slices are required for the OM to start converging to the exact values, which is exactly calculated in one-step procedure using the developed method. Moreover, the slip surface was subdivided into a number as large as 300 slices in order to produce similar results to those obtained with the proposed method.

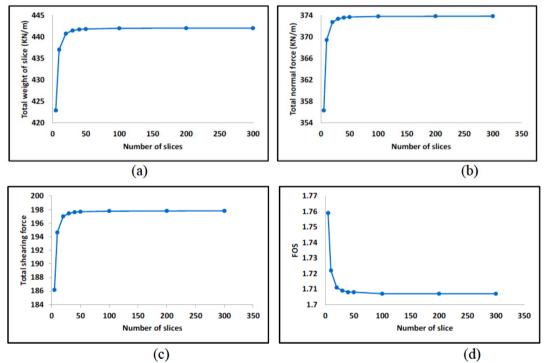


Figure (3): Relationship between number of slices and total weight (a), total normal force (b), total shearing force (c), and FOS.

CONCLUSION

A fast and accurate mathematical formulation that produces readily mathematical equations for the calculation of resultant forces of soil slopes was presented. The significant contribution added to the subject of slope stability analysis is represented in eliminating the need of slicing the slip surfaces. By using infinitesimal slices, the assumption of equal base inclination for adjacent slides becomes feasible, which were not applicable among the various traditional methods of slices developed previously. From the geometrics of the slope and slip surface, the developed method is able to directly calculate the resultant forces without the need of slicing and summing up the slice forces. Since the developed method was formulated for drained homogeneous soils, it is recommended to extend the method to include undrained conditions and zoned soil

embankments. This will enhance the study by incorporating both the dry and wet conditions of earth-fill dams. Further study is required to investigate the efficiency of the proposed method against finite element methods.

ACKNOWLEDGEMENT

The work presented in this paper is a result of cooperation between the University of Tripoli and University of Zintan, Libya. The role of the first author was in the stability analysis, while the second author was mainly involved in the mathematical formulation. The authors gratefully acknowledge the considerable and administrative support from all contributors.

REFERENCES

- [1] Fellenius, W., (1936), Calculations of the Stability of Earth Dams, Proceedings of the Second Congress of Large Dams, Washington D.C, 445-463.
- [2] Bishop, A. W., (1995), The Use of the Slip Circle in the Stability Analysis of Slopes, Geotechnique, 5(1), 7-17.
- [3] Janbu, N., (1954), Stability Analysis of Slopes with Dimensionless Parameters, Thesis for the Doctor of Science in the Field of Civil Engineering, Harvard University Soil Mechanics Series.
- [4] Morgenstern, N. R., and Price, V. E., (1965), The Analysis of the Stability of General Slip Surfaces, Geotechnique, 15(1), 77-93.
- [5] Spencer, E., (1967), A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces, Geotechnique, 17(1), 11-26.
- [6] Fredlund, D. G., and Krahn, J., (1977), Comparison of Slope Stability Methods of Analysis, Canadian Geotechnical Journal, 14(1), 429-439.
- [7] Duncan, J. M., (1996), State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes, Journal of Geotechnical Engineering Division, 122(GT-7), 577-596.
- [8] Janbu, N., (1973), Slope Stability Computations in Embankment-Dam Engineering, New York, John Wiley.
- [9] Sarma, S. K., (1973), Stability Analysis of Embankments and Slopes, Geotechnique, 23(3), 423-433.
- [10] Chugh, A. K., (1986, Variable Interslice Force Inclination in Slope Stability Analysis, Soils and Foundations: Japanese Society of SMFE, 26(1), 115-121.
- [11] Krahn, J., (2003), The Limits of Limit Equilibrium Analysis, Canadian Geotechnical Journal, 40(1), 643-660.
- [12] Abramson, L. W., Lee, T. S., Sharma, S., and Boyce, G. M., (2002), Slope Stability and Stabilization Methods, New York, John Wiley.
- [13] Lowe, J., and Karafiath, L., (1960), Stability of Earth Dams Upon Drawdown, Proceedings of the First American Conference on Soil Mechanics and Foundation Engineering, Mexico City, 537-552.
- [14] Corps of Engineers, (1982), Slope Stability Manual, Washington D.C, Office of the Chief of Engineers.
- [15] Chen, Z., and Song, D., (2021), Numerical investigation of the recent Chenhecun landslide (Gansu, China) using the discrete element method, Natural Hazards 105(1), 717–733.
- [16] Huang M., Fan, X., and Wang, H., (2017), Three-dimensional upper bound stability analysis of slopes with weak interlayer based on rotational-translational mechanisms, Engineering Geology, 223, 82–91.