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SUMMARY

: A general formulation for the modified finite integral
method is presented. The method‘is applied to two example
problems governed by differential equations of the fourth
order, and results obtained are compared with exact and some

other numerical solutions.

EXPLANATIONS OF FIGURES AND TABLES

Figure 1 - Transverse Vibration of a Beam
Figure 2 - Free-Free Beam on Elastic Foundation

Table 1 - Natural Frequencies of a Transversely
Vibrating Beam

Table 2 - Bending Moments and Deflections of a
Free-Free Beam on Elastic Foundation
Under Concentrated Load at the Left End
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FORMULATION OF THE
MODIFIED FINITE INTEGRAL METHOD

By; Dr. Mustafa M. Tawil

Professor, Civil Engg. Dept.
University of El-Fateh

Introduction:

The finite integral method was first derived by Brown and
Trahair (1) in 1968. They considered approximating the highest
and subsequent lower derivatives of a given ordinary differential
equation as being functions of second order variation at each stage;
.while the author in a previous paper (3) considered the highest
derivative only to be approximated by a second degree variation in
the independent variable, and the other lower derivatives as being

exact integrations of that approximate variation.

This modified finite integral method was formulated earlier
in 1979 by the author and applied to some problems using matrices

of the third order only (3).

In this paper a general formulation of the modified finite
integral method is presented and some example problems are solved
- using matrices of the order higher than three. The numerical
results obtained by thisv method are compared with those of
other numerical methods. This numerical corhparative study reveals

excellent accuracy of the proposed method.

!
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Matrix Formulation:

If we let f(x) to be the approximating function to the
highest derivative of a given ordinary differential equation; and
I? be the ith integration performed on this function between the

limits of O and x.

X X X X
I)i( = 'g*(g-*{»g f(x) dx dx dx..... dx
e S L
i times ’ i times

and if the range of integration is divided into even number

of equal segments, n, of length h; then in matrix form:

b'd h il
$13 ) = (gz )7 W IR .. (1)
Where
X 0 h 2h nh T
RS SEETE SRS U PR S
Sth s .. .
(Ni] = the i~ modified finite integral

transformation matrix

When the range of integration is divided into two equal
segments, then using the modified finite integral method, matrices
needed for solving upto the fourth order ordinary differential

equation are given as (3):

0 0 0
[Nl] = 5 8 il | s emenns
i 16 I
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[N, ] Lo 36 6. ..., ( 20 )
96 192 0
o0 0 0
[N3] 1944 115.2 -21.6 | ....... ( 2c )
1036.8 1382.4 - 115.2
e 0 0
[Nu] 633.6 288 576 |eeiein.. (2d)
7372.8 7372.8 -921.6
T
0 h 2h
{I;-} { 1, I, I P ( 2e )
i
£} 1 £(0) £(n) ren)f (of )
When more accuracy is required, the even number of equal
segments is increased. The integrals over these segments may be
derived using the following recurrence relations:
i-1 k
(em-1)h Z h 2(m-1)h h
Ii :E: Ey Ii—k + Ii (m) «...... ( 3a )
k=0
-1 k
(2m)h 2 (2n)* 2(m-1)h  _2n
i 2. o Lix ¥ I () 5455500 ( 3p)
k=0
Where
m 25 3, Hopuwrcommmn s , n/2
n number of equal segments (always even)
0! I
h o1 o G .
Ii (m) the i integration of f(x) between the
limits O and h of the two segments
numbered m.
*Eh(m) the ith integration of f(x) between the
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limits O and 2h of the two segments .

numbered m.

The last two are given as:

I, (m) (—%%Ji [ Ni(2,l) f {(2m-2)h} + Ni(2,2) f {(2m-1)h}

iR

+ Ni(2’3) f (emh) ] ......... ( ba )

I (m) = (F5)0 [ N,(3,1) £ {(2n-2)n} + N (3,2) £{ (2n-1)n]
+ N.(3,3) £ (2mn) ] ...l ( Lbp )

To show how relations (3a, 3b, la, and L4b) are used, let us

3h and Iuh-

find 12 5 ¢

For this, i = 2; m = 2

1
h h 2h h
From (3a): 120 = ( S ok L)+ I @
= Igh h Ifh ) o+ Ig (2)

Making use of equations (1), (2a) and (2b):

12 = ()2 [ 96e(0) + 1020(n) )

1% = (35) [ 4£(0) + 16£(h) + kf(2n) ]

Ig (2) = (735)2 [ b2f(2h) + 36f(3h) - 6£(4h) ]

then: Igh = (TES)E [ 96£(0) + 192f(h) + h8f(o? + 192f(h)

+ UBf(2h) + Lof(2n) + 36£(3n) - 6f(kh) ]

R

(2)2

= [ 144f(0) + 384f(h) + 90f(2h)

+ 36f(3h) - 6f(Lkh) ]

)
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3P~ h® [ 24£(0) + 64f(n) + 15£(2h) |
) ~ _211»_ + + 15 h) +

6f(3n) - £(bh) ]

| 1 k
From 3(b): L = ( ()™ p2h oy 128 ()
k 2-k 2
k=0
2h 2h 2h
= (137 +2n 177 ) + I (2).

Making use of equations (1) and (2b):

12" (2) = (55)° [ 96£(2h) + 192£(3n) ]

then: IB = -(%2)2 [ 96£(0) + 192f(h) + 96£(0) + 38L4f(h)

+ 96f(2h) + 96f(2h) + 192f(3h) ]

o (% )2 [ 192£(0) + 576f(h) + 192f(2h) +192f(3h) ]
Lh h2
or I, = -5 [ 32£(0) + 96f(h) + 32f(2h) + 32f(3h) ]

qutran computer subroutines are given in Appendix IV
which can be used to find the elements needed for 1lst, 2nd 3rd
and L4th integrals to cover any even numbers of segments. Higher
order integrations may be handled in a similar way.

In view of Egs. (2a, b, c, and d), one may write [Nl],

[N2], [N3] and [Nh] as:

vy o= (W)
N, = 6ln2]

[N3] = T.2[N3)
(W] = 57.6[m]

(7)1.“-*6-"&9-.4'11-:-"



[ -

Where

0 O 0
[N1] = |5 8 -1
4 16 4
-
0 0 O©
[N2] = | 7 6 -1
16 32 0
0 ]
[N3] =| 27 16 -3
144 192 -16
- o
0 0 O]
[N&] =| 11 5 -1
128 128 -16

then, Eq. (1) can be represented as:

¥y - %5 [N1] {f} .... (5a)
X h2

{12} = 57 [N2] {f} ...... (5b)
X h3

{13}: m [N3] {f}lesus (5C)
X h4

{14} = 3E0 [N4] {f} .... (5d)

The above transformation is performed in ordér to remove
common factors from the elements of [NZ]’ [N3], and [N4]
matrices.

The elements of the matrices [N1], ..., [N4] are given
in Appendix I for ten equal segments. Elements needed for

higher order integrals may be derived in the same manner.

) Lasasigh & gl oo



Applications of the Method

a) Natural Frequencies of a Transversely Vibrating Beam:
The governing equation of motion for the beam shown in

Figure 1 is:

2 4
9 )
\ +b2—%=0.... (6)
ot X
Where

y = rectangular coordinate representing the
transverse displacement

X = rectangular coordinate representing the
longitudinal distance from the origin

t = time variable

b2 = Elg/w

EI beam flexural rigidity -

g = acceleration due to gravity

=
n

weight of the beam per unit length

Equation (6) can be separated into two ordinary

differential equations by letting y = XT to get:

d*x 2

;;1 - ) X =0 (7)
a’1 | 2

d—t—2-+pT—0 (8)

where

X = function of x only

T = function of t on]&

p = the natural frequency of the vibrating

beam

]
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Equation (7) is to be solved here using the modified
finite integral method to obtain the natural frequencies

of the beam.

1 ,
Let d X
—7 = FEx) sess (9a)
dx
then
3
d X X
= 1% + A (9b)
dx3 1 1
dZX X
d—)‘(—2-= 12 +A1X+A2 o o 0 e (9C)
dX _ .x 2
i " I.3 + Alx /2 + A2x + A3 (9d)
X = IX + A.x3/6 + Ax%/2 + A.x + A (9¢)
4 1 2 3 4 °-
‘Where

Al’ A2, A3, and A4 are constants of integration.

Using the boundary conditions:
2
X

at x = 0 and L, X = EIQ—? = 0
dx
one has:
_ L
Al = - 12/L
A2 = 0
_ 1 L 2 L
Ay = - (I -L° 1;/6)
A4 =0
Where

L = length of the span of beam
In matrix form, Eq. (7) becomes:
([M1] - v[I)) {f} = {0} .... (10)

where

!
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M1] = - —t—7 ([N4] - [x/LI[N4]))
360n :
1 3 :
+ 2 (Ex/L]" - [x/L]) [NZJL
144n
v = b2p2Lt

n = the number of equal segments into which
the span is divided

FI] = the identity matrix
Ex/Ly = a diagonal matrix of the ratios x/L
Ex/L3% = Ex/LIEx/LIEx/L]
[Ni], = a matrix with all the rows being identical
L

to the row corresponding to x = L in [Ni].

Equation (10) is solved for the eigenvalues, Y from
which, the natural frequencies of the beam, Pys can be

calculated as:

pk= 1 -b_zs k=132»39
VYk L

or in another form 4

B 2

Pk = ak ElIg /L % (11)
w
where
v TV AL

Table 1 gives the values of Uys Oos and oy resulted
from the solution of Eq. (10) using the modified finite
integral method with 6, 8, and 10 equal segments. Results
are compared with those using the original finite integral

and finite difference methods (2).

&
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b) Finite Beam on Elastic Foundation:

A free-free beam on an elastic foundation with modu]u%
k carrying a concentrated vertical load P at the left end
(Figure 2) is solved here using the modified finite integral
me thod .

The governing equation for this kind of problem is:

a’ s a0ty = 0 (12)
dx
Where
ot = k/4El
y = rectangular coordinate representing the

vertical deflection of the beam

The boundary conditions are given as:

a3 42
at x = 03 ——% = P/EI, ——§ = 0 (13)
dx dx
3 2
at x = L 9—% - 0, 9—% =0
dx dx

The exact solution for Eq. (12) with the boundary

conditions Eq. (13) is given as (4):

y = 2Pa [sinha L cosal(x/L)coshal(1-x/L)

k(sinhzuL-sinzuL) -sinalcoshal(x/L)cosa L(1-x/L)]

..... (14)
To solve Eq. (12) by the modified finite integral method,

one proceeds in the same way as was done in example (a):
Let = f(x) cee (15a)

then

g
(13 ) ecusigl & gansll dlons



w

d X

= I7 + A cee (15b)
A 1 1
d2 % ‘

= I72 + A,x + A (15c)

dx 2 1 2
dy o X 2
L= 13 4 AXT/2 4 AoXx 4 Ag (15d)

y = 15+ A1x3/6 + AxZ/2 + Agx + Ay . (15e)

Applying the boundary conditions, Eq. (13), in Egs.

(15b) and (15c) one has:

A1 = P/EI
A, = 0
‘L (16)
A1 = -IZ/L
_ L
A1 ® -I1

i QX = =
To determine A3 and A4, one lets ax QL and y Y

at x = L; then:

T 3
y_ = I4 + AlL /6 + A3L # A4

_ 1L 2
8 = I3 + AjLT/2 + Ay
where
OL = the slope at (x = L)
y_ = the deflection at (x = L)
Solving for A3 and A4 one has:
_ L 2
A3 = -13 - PL™/2ET + OL
B L L 3
A4 = -14 + LI3 +»PL /3EDl - LOL + YL (17)

(14 ) Lowsigl) & gasll dlas



Taking A, as the first relation in Eq. (16), along
with A2, A3, and A4, the governing Eq. (12) can be

written in matrix form as:

3
[M2](fF} = -4a” (fpp (2-3(x/L) + (x/L)3)
- o L{l-x/L} +y (1)
(18)
Where.
[M2] = [1] + 4(L)*(——7 (IN4] - [N&]D
360n
+ L r(1-x/0)3 N3]
240n

Solution of Eq. (18) for {f} yields

(£} = 4t (- Bt (f) + 0 LIFJ-y ifg )
' (19)
Where
o= en® mert s ¢ )
o~ o2t 1 - x/u
(Fy) = m21"! (13

For a given value of al, the vector {f} is determined
from Eq. (19) in terms of the two unknowns (OLL) and (yL).
To find these unknowns, the vector {fl} is substituted in
the right hand sides of the last two relations of Eq. (16)

with the left hand sides being equal to P/EI; that is:

(15 ) daasigl! & gasll Ao



P/EI = - I;/L

L

P/EI = —I1

When solving these two equations simultaneously,
values of OLL and y,  are determined, and the last two
unknown integration constants can now be determined by
Eq. (17).

Table 2. gives the results of (kL3 X bending moment/P)
and (kL x deflection/P) for the left half of the beam with
al = 10, with the span being divided into ten equal segments.
Numerical solutions from the modified and the original finite
integral methods are tabulated; and comparisons with the

exact solution are given.

Conclusions:

A close examination of the results of the two example
problems given in Tables 1 and 2 shows the following:

1. The overall results given by the modified finite
integral method are much better than those given by the
original finite integral method.

2. Both finite integral methods give better results
than the finite difference method in the first example.

3. It seems that the modified finite integral method
is an accurate numerical tool in solving problems, governed
by ordinary differential equations or by partial differential
equations that have the property of being reduced to a set
of ordinary differential equations through a separation-of-

variables technique.

(16 ) dawsigl & gall dlas
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Appendix I Matrices [N 1]:

[N1] =

Matrix
L
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Appendix III. Notation

The following symbols are used in this paper:

A A A

A constants of integration;

1> 72° 3 4 ‘
b = factor for a vibrating beam;
El = beam flexural rigidity;

3° = vectors;

—h
—
>
~
]

function of X;

—~

—h

Lt
1]

vector of f(x);
g = acceleration due to gravity;

h = length of a segment;

[I] = the identity matrix;
X _ .th . ;
Iy =i integration performed on f(x)
between the limits of 0 and X;
i = counter;
k = counter; modular of an elastic
foundation;
L = span length;

(M1], [M2]

m = counter;

matrices;

[N.], [Ni] = matrices for the 1th integration
1 of f(x);
[Ni]L = matrix with all its rows being

jdentical to the row corresponding
to x = L in [Ni];

n = number of equal segments into which
the span L is divided;

P = concentrated load;

(23 ) dscusigl) & gastl o



P = natural frequency;

—
1]

function of t;
t = time variable'
W = weight of a beam per unit length;
X = function of x;

X = coordinate;

[x/LJ = diagonal matrix with values of x/Lg

coordinate; displacement;

<
I

y_ = deflection at x = L;
a = factor for a beam on elastic foundation;
uk = factor;

Yk = eigenvalue;

[»]
1}

slope at x = L.

L
FIG. 1 - - - - - == - — Tt — -—= X
T77T
[
> L >
|
|
y
FIG-2 =
- - - - - - - - -—= X
AX KX XX XX XX XX XX XX XX XX XX XX
e )

K e -
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Appendix IV. Fortran Computer Subroutines

The following subroutines may be used to find the
elements of matrices for integration over any even number of

segments using finite integral method:

FSTGAL: A subroutine to find the elements of the

first integral matrix [ A ], where:
x
{Il} = [ A] if}

SNDGAL: A subroutine to find the elements of the

second integral matrix [ B ], where:
X
§1,% = [B]1ir}

TRDGAL: A subroutine to find the elements of the

third integral matrix [ C ], where:

SIF = Lelifd

FRTGAL: A subroutine to find the elements of the fourth

integral matrix [ D ], where:
X
iluf = [ D ]1{f}

It should be noted that each integral matrix will use the
elements of all integral matrices lower than the order required.
That means if matrix [C] is needed, then matrices [A] and [B]
are required in finding the elements of [C], see equations (3a and

3b).
The symbols used in these subroutines are given below:

N is the number of segments in the range of integration,
always even.

XL is the length over which the integration is required.
A2 is the matrix [N1] for two segments.

A is thematrix [A]

NA is the dimensions of matrix [A] in the main program.
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B2 is the matrix [N2]>for two segments.

B is the matrix [B].

NB is the dimensions of matrix [B] in the main program.
c2 is the matrix [N3] for two segments.

C is the matrix [C].

NC is the dimensions of matrix [C] in the main program.
D2 is the matrix [N4] for two Segmentsi

D is the matrix [D].

ND is the dimensions of matrix [D] in the main program.

SUBROUTINE FSTGAL (N, XL, A2, A, NA)
DIMENSION A2(3,3),A(NA,NA)
M= N+1
H= XL/N
DO 1 I=1,M
DO 1 J=1,M
T ACL,J)= 0,
Fi= H/12.
Do 2 1=2,3
Do 2 J=1,3
ACL,J)= F1xA2(1,J)
IF(N.EQ.2) G& To 10

N

N2= N/2
DO 3 I1=2,nN2
1= 2x1
[2= 11-1
[83= 12-1
4= [1+1

DO 4 J=1,13
ALLT,J)= A(l2,J)

4 Alla,J)= AC11,0)
AllT,12)= All2,12)+A(2,1)
All4,12)= A(l2,12)+A(3,1)
A(IT,11)= A(2,2)
AlI1,14)= A(2,3)

All4,11)= A(3,2)
3 All4,14)= A(3,3)
10 RETURN

END
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SUBROUTINE SNDGAL (N, XL,B2,B,NB,A)
DIMENSIGN B2(3,3),B(NB,NB),A(NB,NB)
M= N+1

H= XL/N

D& 1 I=1,M

bDg 1 J=1,M

B(I,J)= 0.

F2= HxH/24.

DO 2 1=2,3

bo 2 J=1,3

B(I,J)= F2xB2(I,J)

IF(N.EQ.2) GO TO 10

N2= N/2
DO 3 I=2,N2
1= 2xI
2= 11-1
[4= 1141

DO.4 J=1,12

B(I1,J)= B(I12,J)+HxA(I2,J)
BUI4,J)= B(12,J)+2. xHxA(12,J)
B(I1,12)= B(I11,12)+B(2,1)
B(i4,12)= B(14,12)+B(3,1)
B(I1,11)= B(2,2)

B(I1,14)= B(2,3)

B(l4,11)= B(3,2)

?(I4,I4)= B(3, 3)

RETURN

END

SUBROUTINE TRDGAL (N, XL,C2,C,NC,A,B)
DIMENSION C2(3,3),C(NC,NC),A(NC,NC),B(NC, NC)
M= N+1

H= XL/N

DO 1 I=1,M

DO 1 J=1,M

C(I,J)= 0.

F3= HxHxH/240.

H2= HxH/2.

Do 2 [=2,3

bg 2 J=1,3

C(1,J)= F3xC2(I1,J)

IF(IN.EQ.2) GO TG 10

N2= N/2

DO 3 [=2,N2
[1= 2x1

I2= 11-1
[4= 11+1

DO 4 J=1,12

C(I1,J)= C(I2,J)+HxB(12,J)+H2xA(12,J)
C(l4,J)= C(12,J¥+2. xHxB(12,J)+4.xH2xA(12,J)
C(I1 I2)= C(I1,12)+C(2,1)

C(l4,12)= C{I14,12)+C(3,1)

C(I11,I1)= C(2,2)

C(r1,14)= c(2,3)

C(l4,11)= C(3,2)

C(14,14)= C(3,3)

RETURN

END
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8 SUTINE FRTGAL (N, XL,D2,D,ND,4,B,C}
S?ggNSIGN D2(3,3),D(NDJND);A(ND,ND),B(ND,ND};C(ND,ND)
M= N+1
H= XL/N
pg 1 I=1,M
Do 1 J=1.,M
1 Dil,J)= 0.
Fd= HxHXxHxH/720.
H2= HxH/ 2.
H3= H2xH/3.
Dy 2 [=2,3
Do 2 J=1.3
2 D(1,Jd)= FaxDpaci,J)
IF(N.EQ.2) GG T 10

N2= N/2

DO 3 1=2,N2
I1= 2x]

[2= 11-1
4= [1+1

Do 4 J=t1,12
DCI1,J)= DOI2,J)+HxC(12,J)+H2xB (12, J)+HB*A(12,J)
4 D0I4,J)= D(I12,J3+42, xHxC(12,J)+4. xH2xB (12, J)+8, xH3*A(12,J)
D11, 12)= DCI1,12)+D(2,1)
DCi4,12)= D(14,12)+D(3,1)
D11, 11)= D(2,2)
DCI1,14)= D(2,3)
D4, 11)= D(3,2)
3 D(I4,14)= DB(3,3)
10 RETURN
END
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