JOURNAL OF ENGINEERING RESEARCH

DECEMBER

1991

The Journal of Engineering Research is Published by the Engineering Research Center Tripoli Jamahirya

CONTENTS

1- Design of concrete slabs M.A Ghalhoud

V.2

- 2- Changes in Moment of Inertia of beams with rectangular cross section M.A. Tawil
- 3- A study of Bazalet stone as concrete aggregate M. Al-Mabrouk and S. Al Azahari
- 4- Developments in analysis of shells and plates S.Y. Baroni and Gnaba
- 5- Water Problems in Tripoli: Desalination as a Solution. M.A. Al Munntaser and H.Ziad
- 7- Translation in Libya A. Brera and F. Askander.
- 8- A mathematical Model for evaluation of a technical training program.
- 9- Analysis of Rectangular plates with Arbitrary Boundary conditions vesting on elastic foundations. S.A. El-Azhari
- 10- Numerical Solution for flow Past-Wedges. G.M. Fellah.

م. جمعة أمحمد الفلاح قسم الهندسة البحرية ـ كلية الهندسة ـ جامعة الفاتح

لتحليل العددي لتدفق على أسطح مائلة ﴿أَا

NUMERICAL SOLUTION FOR FLOW PAST-WEDGES

BY: GIUMA M. FELLAH MARINE ENGINEERING DEPARTMENT AL-RAYA AL-KHADRA UNIVERSITY

ملخص منحنى السرعة واجهاد القص ومعامل السحب تتأثر بزاوية الميل وبالتالى بانخفاض الضغط لتدفق مستقر، غير قابل للانضغاط والانسياب على الأسطح المائلة. وفى هذه الورقة نستعمل طريقة رانج ـ كوتا التكاملية لحل معادلة فالكنار ـ سكان عددياً. وهذه المعادلة هي معادلة

معادلة فالكبار - سكان عدديا. وهذه المعادلة هي معادلة تفاضلية عادية من الدرجة الثالثة حيث لا يوجد لها حل تحليلى معروف. وبحل هذه المعادلة عددياً يمكن أيضاً ايجاد تأثير انخفاض الضغط على سمك الطبقة الحدية وسمك الازاحة وسمك كمية الحركة.

Abstract: Average momentum displacements Abstract:

A computer program is run to solve Falkner-Skan equation for steady, incopressible, laminar flow past wedges. The program integrates the Falkner-Skan equation using a fourth order Runge-Kutta integration scheme. The Falkner-Skan equation is a third order non-linear ordinary differential equation for which no analytical solution exists. It is usually associated with a two-point an asymptotic boundary value problem. The velocity distribution, the wall-shear stress and the dragcoeffecient are evaluated. Finally the displacement, momentum and boundary layer thicknesses are obtained.

Introduction:

A complete solutions for flow past wedges will be found. The paper will deal with some exact solutions of the boundary layer equations. A solution will be considered exact when it is a complete solution of the boundary layer equations, irrespective of whether it is obtained analytically or by numerical methods.

Falkner-Skan equations:

It is known that similarity solutions exist when the velocity of the potential flow is proportional to a power of the lenght, x, measured from the stagnation point, i. e for:

U (x) = C. \times 1M M = B/ (2-B) or B = 2M/ (M+1) U (x) = potential flow velacity. B = Falkner-Skan parameter. C = constant.

Since the flow outside the boundary layer is inviscid flow, Euler's equation can be used to relate the potential flow velocity to pressure gradient. The differentiation of this equation with respect to x gives:

dp/dx = - d.U(x). dU(x)/dx

where d is the fluid density. Since U = C. x 1M, it can be shown that: dp/dx = - (d.M/x). U 12.

The physical meaning of B is indicated in fig (1). The value of «M» specifies the inviscid pressure gradient. For instance, B = 0 and M = 0, for flow over a flat plate with zero pressure gradient. Thus U = C, a constant free-stream velocity. For stagnation flow, B = 1.0 and M = 1.0. This requires that the free-stream velocity be given by U (x) = C.x.

The following ordinary differential equation and its associated boundary conditions is called the Falkner-

Skan equation for which numerical solution to be obtained by using a fourth-order Runge-Kutta integration scheme

The governing differential equation:

F''' + F.F'' + B (1-F 12) = 0.

Boundary conditions:

F(E) = 0 at E = 0

F'(E) = 0 at E = 0

F'(E) = 1.0 as E approaching infinity

Where: E = y. SQR [(M+1). U/2)u x] = dimensionless - distance F (E) = S/SQR $[2U \ U \ x/ \ (M+1)]$ = dimensionless - stream function

U = kinematic viscosity S = stream function F' (E) = the first derivative of F (E) F'' (E) = the second derivative of F (E)

u = x - component velocity

U = free - stream velocity

WALL SHEAR-STRESS AND DRAG COEFFICIENT:

T (x, 0) = udu/dy = uU. SQR [(M+1) U/2U x] F'' (0) it can be shown that:

T (x, o) = uU. SQR [(M+1)/2] [SQR (Rex)/x] F'' (0) Also it can be shown that:

T = 2T (x, o) at x = L

T(x, o) = local shear-stress

T = Average shear stress over the entire length.

The value of F'' (0) will be evaluated numerically. u = dynamic viscosity

D(x) = 2T(x, o)/d. U12 = Local skin friction

D(x) = 2. SQR [(M+1)/2]. F''(0) .1/SAR (Rex)

Also:

D = 2. D(x) at $x = L_{ABD}$

D(x) = local skin-friction

D = average skin-friction over the entire length Rex = U. x/U local Reynolds's number

DISPLACEMENT AND MOMENTUM THICKNESSES:

The displacement thickness may be interpreted as the decrease due to viscous effects, with respect to the equivalent inviscid flow, in the mass low rate between the surface and a stream line at large distance from the surface. In terms of the defined similarity parameters the displacement thickness «DT» is defined as follows for incompressible flow:

$$DT (x) = \int_{0}^{\infty} (1-u/U) dy = SQR [2. v x/(M+1) U]$$
$$\int_{0}^{\infty} (1-F') dE.$$

Let I1 = \int_{0}^{∞} (1-F') dE

The value of 11 will be evaluated numerically.

DT (x) = 11. SQR [2/ (M+1]. x/SQR (Rex) DT = (2/3). DT (x) at x = L

DT(x) = local displacement thickness.DT = Average displacement thickness over the entire length.

The momentun thickness is a measure of the decrease in momentun of the mass in the boundary-layer with respect to the value it would have in the equivalent inviscid flow field. The momentum thickness «MT» for incompressible flow is given by:

 $MT (x) = \int_{0}^{\infty} (u/U). (1-u/U) dy = SQR [2v x] /U$ (M+1)

$$\int_0^\infty F' (1-F') dE.$$

Let $12 = \int_{0}^{\infty} F'(1-F') dE$.

The value of 12 will be evaluated numerically. MT (x) = 12. SQR [2/(M+1)]. x/SQR (Rex). MT = (2/3). MT (x) at x = L

MT(x) = local momentum displacementMT = Average momentum displacement

BOUNDARY LAYER THICKNESS:

It is desired to define the boundary layer thickness as that distance for which:

u(x) = 0.99U(x).

Results:

Fig. (1)

Wall shear-stress:		
T(x, o) = 0.4695 U. SOR (Rex)	/x	
$T = 0.9390 U_{\odot} SOR (Rel/L)$		
Skin friction:		
$\mathcal{D}(t) = 0.0200 \text{ COP (Part)}$		
D(x) = 0.9390, SQR(Rex)		
D = 1.8780. SQR (Rel)		
Displacement thickness:		
DT(x) = 1.3911. x/SQR(Rex)		
DT = 0.9327.x/SQR (Rel)		
Momentum thickness:		
MT(x) = 0.4553.x/SQR(Rex)		
MT = 0.3035. L/SQR (Rel)		
Boundary layer thickness: FIC	G (1)	
F'(E) = u/U = 0.99 at $E = 3.18$		
Set: $y = BT$ and $E = 3.18$, the re	esult is:	
BT = 4.33 x/SOR (Rex).		

Rel = Reynolds number at x = L.

TABLE OF RESULTS (I):

B a0a0.0	A(x) 0495 0	G(x)	J(x)
0.0	.3321	.6642	4.92
0.15	.4695	.9390	4.33
1/3	.6213	1.2426	3.79
1/2	.7575	1.5150	3.28
2/3	.8997	1.7994	3.01
1.0	1.2326	2.4652	2.38
4/3	1.7150	3.4300	1.80
3/2	2.0891	4.1782	1.52
5/3	2.6857	5.3714	1.20

Where:

A (x) = [T (x, o)/ uU (x)]. x/ SQR (Rex).

G(x) = D(x). SQR (Rex). J(x) = [BT(x)/x]. SQR (Rex).

Note: T = 2T (x, o) at x = L

D = 2D(x, o) at x = L

TABLE OF RESULTS (II):

B 8803.8	K(x)	N(x)	Q (x)	4.4
0.0	1.7208	0.6641 00	2.59	4.8
0.15	1.399100	0.5728	2.44	
1/3 8008.4	1.1492	0.4894	2.35	
1/2	0.9854	0.4290	2.30	
2/3	0.8547	0.3779	2.26	
1.0	0.6479	0.2923	2.22	
4/3	0.4765	0.2177	2.19	
3/2	0.3945	0.1811	2.18	
5/3	0.3091	0.1425	2.17	

Where:

K(x) = [DT (x)/x]. SQR (Rex). N(x) = [MT (x)/x]. SQR (Rex).Q(x) = DT (x) /MT (x).

Note: DT = (2/3). DT (x) at x = LMT = (2/3). MT (x) at x = L

Conclusions:

By obtaining solutions for various values of «B», $o \le B < 2.0$, the effect of various pressure gradient on wall shear-stress, skin-friction, displacement, momentum and boundary layer thicknesses are found. The solution gives the complete profiles of F, F' and F'' as a function of «E» through the boundary layer.

It is found that, the wall shear-stress and the skin-friction increase with the increasing pressure gradient, while displacement, momentum and boundary-layer thicknesses are decreasing. The numerical values which are obtained using fourth order Runge-Kutta integration scheme, found to be very close to those found by other numerical methods.

References:

1 - ADAMAS, J., and DAVID ROGERS: «Computer-Aided Heat Transfer, «Mc-Graw-Hill, New York, 1973.

2 - SCHLICHING, H.: «Boundary layer Theory, «McGraw-Hill, New York 1979.

3 - KAYS, W.M., and M.E. CRAWFORD: «Convective Heat and Mass Transfer, «McGraw-Hill, New York, 1980.

Appendix:

FOR «B»	= 0.0				
0.8597 B	F " 0.0520,0	F′ 53467	F		
0.0	0.4696	0.0000	0.0000		
0.2	0.4693	0.0939	0.0094		
0.4	0.4673	0.1876	0.0375		
0.6	0.4617	0.2806	0.0844		
0.8	0.4512	0.3720	0.1497		
1.0	0.4344	0.4606	0.2330		
1.2	0.4106	0.5452	0.3337		
1.4	0.3797	0.6244	0.4507		
1.6	0.3425	0.6967	0.5830		
1.8	0.3004	0.7611	0.7289		
2.0	0.2557	0.8167	0.8868		

مجلة البحوث الهندسية (3)

						0.0000	
2.2	0.2106	0.8633	1.0549	4.4	0.0008	0.9998	3.3714
2.4	0.1676	0.9011	1.2315	4.6	0.0004	0.9999	3.5714
2.6	0.1286	0.9306	1.4148	4.8	0.0002	1.0000	3.7714
2.8	0.0951	0.9529	1.6033	5.0	0.0001	1.0000	3.9714
3.0	0.0677	0.9691	1.7956	5.2	0.0000	1.0000	3.1714
3.2	0.0464	0.9804	2.9906	5.4	0.0000	1.0000	4.3714
3.4	0.0305	0.9880	2.1875	5.6	0.0000	1.0000	4.5714
3.6	0.0193	0.9929	2.3856	5.8	0.0000 (×	1.0000	4.7714
3.8	0.0118	0.9959	2.5845	6.0	0.0000	1.0000	4.9714
4.0	0.0069	0.9978	2.7839	6.2	0.0000	1.0000	5.1714
4.2	0.0039	0.9988	2.9836	11 _ 1	03060764	12 - 0.42	01140750
4.4	0.0021	0.9994	3.1834	11 = 1.	.02000/04	12 - 0.42	21143/33
4.6	0.0011	0.9997	3.3833				
4.8	0.0005	0.9999	3.5833				
5.0	0.0003	0.9999	3.7832		A Standard		
5.2	0.0001	1.0000	3.9832	FOR «F	3 = 1/3		
5.4	0.0001	1.0000	4.1832			.(x93) H(Te	111 日本 1月
5.6	0.0000	1.0000	4.3832	E	F''	F' indriva abl	Fell = log
5.8	0.0000	1.0000	4.5832				
6.0	0.0000	1.0000	4.7832	0.0	0.8021	0.0000	0.0000
6.2	0.0000	1.0000	4.9832	0.2	0.7352	0.1537	0.0156
4 4 9 4 9	tony hory of they have		400000000	0.4	0.6670	0.2940	0.0606
11 = 1.216	77677	12 = 0	.469597028	0.6	0.5972	0.4204	0.1323
	77-10		Patarana	0.8	0.5259	0.5328	0.2278
				1.0	0.4542	0.6308	0.3444
	ND ROGERS			1.2	0.3837	0.7145	0.4792
		Transfer, «Mr	ter-Aided Hout	1.4	0.3161	0.7844	0.6293
FOR (B) =	0.15		1973.	1.6	0.2534	0.8413	0.7921
. OR «D# –	undary laye			1.8	0.1973	0.8863	0.9650
F	F''	Fromwold	«McGraw+Hit)	2.0	0.1489	0.9207	0.1459
B-	<u>a navio an</u>	A Part Ling A	<u> </u>	2.2	0.1088	0.9464	1.3327
0.0	0.6386	0.0000	0.0000	2.4	0.0769	0.9648	1.5240
0.2	0.6082	0.1247	0.0126	2.6	0.0525	0.9776	1.7183
0.4	0.5759	0.2432	0.0495	2.8	0.0345	0.9862	1.9147
0.6	0.5400	0.3548	0.1094	3.0	0.0219	0.9918	2.1126
0.8	0.4996	0.4589	0.1909	3.2	0.0134	0.9953	2.3113
1.0	0.4545	0.5543	0.2924	3.4	0.0079	0.9974	2.5106
1.2	0.4052	0.6404	0.4120	3.6	0.0045	0.9986	2.7102
1.4	0.3529	0.7162	0.5478	3.8	0.0025	0.9993	2.9100
1.6	0.2993	0.7814	0.6978	4.0	0.0013	0.9996	3.1099
1.8	0.2467	0.8360	0.8597	4.2	0.0007	0.9998	3.3099
2.0	0.1971	0.8803	0.0315	4.4	0.0003	0.9999	3.5098
2.2	0.1524	0.9152	1.2112	4.6	0.0002	1.0000	3.7098
2.4	0.1138	0.9417	1.3970	4.8	0.0001	1.0000	3.9098
2.6	0.0821	0.9612	1.5874	5.0	0.0000	1.0000	4.1098
2.8	0.0570	0.9750	1.7811	5.2	0.0000	1.0000	4.3098
3.0	0.0382	0.9844	1.9771	5.4	0.0000	1.0000	4.5098
3.2	0.0246	0.9906	2,1746	5.6	0.0000	1.0000	4.7098
3.4	0.0153	0.9945	2.3732	5.8	0.0000	1.0000	4,9098
3.6	0.0091	0.9969	2.5723	6.0	0.000 0	1.0000	5.1098
3.8	0.0001	0.0000	2 7710	6.0	0.0000	1.0000	E 2008
	0.0052	0.9983	2.//19	n /			1 1190
40	0.0052	0.9983	2.9716	0.2	0.0000	1.0000	5.3090
4.0	0.0052 0.0029 0.0015	0.9983	2.9716	$\frac{0.2}{11 = 0}$.890188186	12 = 0.3	79057289

مجلة البحوث الهندسية (4)

FOR «B» = 1/2					
E I	F″	F'	F		
0.0 0000.0	0.9277	0.0000	0.0000 0.0		
0.2 0720.0	0.8277	0.21755	0.0179		
0.1 025 4.0	0.7282	0.3311	0.0689		
0.6	0.6300	0.4669	0.1490		
0.8	0.5348	0.5833	0.2543 8.0		
0.5121 0.1	0.4443	0.6811	0.3811		
1.2 2880.0	0.3604	0.7615	0.5256		
1.4 0888.0	0.2850	0.8259	0.6846		
1.6	0.2192	0.8761	0.8550		
1.2508 8.1	0.1637	0.9142	1.0342		
2.0	0.1185	0.9422	1.2200 0.5		
2.2	0.0831	0.9623	1.4106		
2.4 2048.1	0.0564	0.9761	1.6045		
2.6 8540.5	0.0370	0.9853	1.8007		
2.8	0.0234	0.9912	1.9984		
3.0	0.0143	0.9950	2.1971		
3.2 \$\$ 64.2	0.0085	0.9972	2 3963		
3.4 25.68.2	0.0048	0.9985	2 5959		
3.6 12.40.6	0.0026	0.9992	2 7957		
3.2422 8.6	0.0014	0.9996	2.9956		
3.4421 0.6	0.0007000.0	0.9998	3 1955		
3.6421 2.4	0.0007	0.9990	3 3955		
3.842	0.0003	1,0000	3.5955		
4.0421 3.4	0.0002	1.0000	3 7955		
4.8	0.0001	1.0000	2 0055		
5.0	0.0000	1.0000	3.9955 4 1055 0.2		
5.0	0.0001	1.0000	4.1955		
5.Z	0.0000	1.0000	4.3955		
5.4 F (1940 P	0.0000	1.0000	4.3935		
5.0	0.0000	1.0000	4./955		
5.8	0.0000	1.0000	4.9955		
6.0	0.0000	1.0000	5.1955		
6.2	0.0000	1.0000	5.1995		
11 = 0.8045	48419	I 2 = 0	.3502703		
		l de la companya de l La companya de la comp			
	-2/2		POR 8 = 2		
FUK «B»	-2/3				
E	F″	F'	F		
0.0 0000.0	1.0389	0.0000	0.0000		
0.2 8820.0	0.9061	0.1945	0.0199		
0.4	0.7761	0.3626	0.0760		
0.2218 6.0	0.6518	0.5053	0.1632		
0.3644 8.0	0.5357	0.6239	0.2765		
0.5265 0.1	0.4303	0.7203	0.4113		

0.3371 0.7968

0.2572 0.8560

0.5633

0.7289

1.2

1.4

11=0.740162777			12=0.32	27268846
6.2	VCULUD DANÉ A	0.0000	1.0000	5.4598
6.0		0.0000	1.0000	5.2598
5.8		0.0000	1.0000	5.0598
5.6		0.0000	1.0000	4.8598
5.4		0.0000	1.0000	4.6598
5.2		0.0000	1.0000	4.4598
5.0		0.0000	1.0000	4.2598
4.8		0.0000	1.0000	4.0598
4.6		0.0000	1.0000	3.8598
4.4		0.0001	1.0000	3.6598
4.2		0.0002	1.0000	3.4598
4.0		0.0004	0.9999	3.2599
3.8		0.0008	0.9998	3.0599
3.6		0.0016	0.9995	2.8600
3.4		0.0031	0.9991	2.6601
3.2		0.0056	0.9982	2.4604
3.0		0.0098	0.9967	2.2609
2.8		0.0166	0.9941	2.0618
2.6		0.0270	0.9898	1.8633
2.4		0.0426	0.9830	1.6660
2.2	4.15,24	0.0650	0.9723	1.4704
2.0		0.0961	0.9564	1.2774
1.8		0.1375	0.9332	1.0883
1.6		0.1908	0.9006	0.9048

FOR	«B»	=1.0	

6198 8182 B	F " (New	F'	F			
0.0	1.2326	0.0000	0.0000			
0.2	1.0345	0.2266	0.0233			
0.4	0.8463	0.4145	0.0881			
0.6	0.6752	0.5663	0.1867			
0.8	0.5251	0.6859	0.3124			
1.0 2010	0.3980	0.7779	0.4592			
1.2	0.2938	0.8467	0.6220			
1.4	0.2110	0.8968	0.7967			
1.6	0.1474	0.9323	0.9798			
1.8	0.1000	0.9568	1.1689			
2.0	0.0658	0.9732	1.3620			
2.2	0.0420	0.9839	1.5578			
2.4	0.0260	0.9905	1.7553			
2.6	0.0156	0.9946	1.9538			
2.8	0.0090	0.9970	2.1530			
3.0	0.0051	0.9984	2.3526			
3.2	0.0028	0.9992	2.5523			
3.4	0.0014	0.9996	2.7522			
3.6	0.0007	0.9998	2.9521			
3.8	0.0004	0.9999	3.1521			
4.0	0.0002	1.0000	3.3521			

مجلة البحوث الهندسية (5)

1

4.2	0.0001	1.0000	3.5521	FOR	"B» -	- 3/7		
4.4	0.0000	1.0000	3.7521	TOK	. «D <i>»</i> -	- 572		
4.6	0.0000	1.0000	3.9521	F		E''	F'	F
4.8	0.0000	1.0000	4.1521	L	1	1	-1 ·	1
5.0	0.0000	1.0000	4.3521	0.0		1.4772	0.0000	0.0000
5.2	0.0000	1.0000	4.5521	0.2		1.1823	0.2657	0.0276
5.4	0.0000	1.0000	4.7521	0.4		0.9130	0.4747	0.1025
5.6	0.0000	1.0000	4.9521	0.6		0.6827	0.6335	0.2141
5.8	0.0000	1.0000	5.1521	0.8	0.25	0.4955	0.7507	0.3531
6.0	0.0000	1.0000	5.3521	1.0		0.3495	0.8345	0.5121
6.2	0.0000	1.0000	5.5521	1.2		0.2398	0.8929	0.6852
11 0 (170	00114	12 0 3	000040000	1.4		0.1600	0.9324	0.8680
11 = 0 = 64/9	900114	12=0=2	292343229	1.6		0.1038	0.9585	1.0573
3,4598				1.8		0.0655	0.9751	1.2508
				2.0		0.0401	0.9855	1.4469
				2.2		0.0239	0.9918	1.6447
	1/3	0000	4.8	2.4		0.0138	0.9955	1.8435
TOR «D» =-	1 0000			2.6		0.0077	0.9976	2.0428
E SPERA	E'' 0000 1	E/ 0000 0	E	2.8		0.0042	0.9988	2.2425
	1 0000	0000		3.0		0.0022	0.9994	2.4423
0.0	1.4003	0.0000	0.0000	3.2		0.0011	0.9997	2.6422
0.2	1.1376	0.2536	0.0262	3.4		0.0006	0.9999	2.8422
0.4	0.8946	0.4564	0.0980	3.6		0.0003	0.9999	3.0421
0.6	0.6827	0.6135	0.2057	3.8		0.0001	1.0000	3.2421
0.8	0.5063	0.7318	0.3409	4.0		0.0001	1.0000	3,4421
1.2 088957	0.2564	0.8801	0.6666	4.2		0.0000	1.0000	3.6421
1.4	0.1750	0.9228	0.8471	4.4		0.0000	1.0000	3.8421
1.6	0.1162	0.9516	1.0347	4.6		0.0000	1.0000	4.0421
1.8	0.0750	0.9704	1.2271	4.8		0.0000	1.0000	4.2421
2.0	0.0470	0.9824	1.4225	5.0		0.0000	1.0000	4.4421
2.2	0.0286	0.9899	1.6198	5.2		0.0000	1.0000	4.6421
2.4	0.0169	0.9943	1.8182	5.4		0.0000	1.0000	4.8421
2.6	0.0096	0.9969	2.0174	5.6		0.0000	1.0000	5.0421
2.8	0.0053	0.9984	2.2169	5.8		0.0000	1.0000	5.2421
3.0	0.0029	0.9992	2.4167	6.0		0.0000	1.0000	5.4421
3.2	0.0015	0.9996	2.6165	6.2		0.0000	1.0000	5.6421
3.4	0.0007	0.9998	2.8165		04.0	0000	0000	11 A.V
3.6	0.0004	0.9999	3.0165	$\mathbf{I1}=0$.5578	81419	12 =	0.25615947
3.8	0.0002	1.0000	3.2164					
4.0	0.0001	1.0000	3.4164					
4.2	0.0000	1.0000	3.6164					
4.4	0.0000	1.0000	3.8164	EOP "I	P., _ I	5/2		
4.6	0.0000	1.0000	4.0164	FUK «I	$D^{*} - 3$	5/5		
4.8	0.0000	1.0000	4.2164	C		E//	E/	E
5.0	0.0000	1.0000	4.4164	E	3	F	A. L	Ч Г
5.2	0.0000	1.0000	4.6164	0.0		1.5504	0.0000	0.0000
5.4	0.0000	1.0000	4.8164	0.2		1.2235	0.2771	0.0288
5.6	0.0000	1.0000	5.0164	0.4		0.9286	0.4916	0.1066
5.8	0.0000	1.0000	5.2164	0.6		0.6811	0.6517	0.2218
6.0	0.0000	1.0000	5.4164	0.8		0.4842	0.7674	0.3644
6.2	0.0000	1.0000	5.6164	1.0		0.3344	0.8485	0.5265
			0.01010.0	1.2		0.2245	0.9038	0.7021
11=0.58350	66599	12=0.	266686348	1.4		0.1466	0.9405	0.8867

مجلة البحوث الهندسية (6)

4.0	0.0000	1.0000	3.4647		55557205	12 - 0	.240/ 31004
3.8	0.0001	1.0000	3.2647	11 - 0 5	35334265	12 - 0	246791084
3.6	0.0002	1.0000	3.0647	6.2	0.0000	1.0000	5.8647
3.4	0.0004	0.9999	2.8647	6.0	0.0000	1.0000	5.6647
3.2	0.0009	0.9998	2.6647	5.8	0.0000	1.0000	5.4647
3.0	0.0017	0.9995	2.4648	5.6	0.0000	1.0000	5.2647
2.8	0.0033	0.9990	2.2649	5.4	0.0000	1.0000	5.0647
2.6	0.0063	0.9981	2.0652	5.2	0.0000	1.0000	4.8647
2.4	0.0114	0.9964	1.8657	5.0	0.0000	1.0000	4.4647
2.2	0.0201	0.9933	1.6667	4.8	0.0002	1.0000	4.2647
2.0	0.0345	0.9880	1.4686	4.6	0.0000	1.0000	4.0647
1.8	0.0575	0.9789	1.2718	4.4	0.0000	1.0000	3.8647
1.6	0.0931	0.9641	1.0774	4.2	0.0000	1.0000	3.6647

BOUNDARY CONDITIONS RESTING ON FLASTIC

FOUNDATIONS

BR. SANUSI A. ELAZHARI PH

Engineering Research Center.

ABSTRAC

In this paper the analysis of rectangular plates on elastic foundation, with arbitrary boundary conditions are considered. The solution approach consists of choosing a series of functions which, term by term, satisfy the governing greation and the boundary conditions on displacement. The boundary condition on slope is satisfied by misuntaring the weighted residual procedure

The closed form solution developed in this paper can be generalized to consider any combination of the boundary conditions.

مذه البررقة تحتوى على تحليل الصفيائي الموضوعة على أساسات مطاطية وشروطها الحدودية اختيارية . طريقة الحل التي اتبعت في هذه الورقة تسمى التحليل بطريقة المسلسلات اللاميائية ; وبانجاذ عدد كبير من المعاملات لهذه المسلسلات التي تخل منها بعقق المعادلة الرئيسية وجمعها جمعاً جميعاً وجد في بحوث منبق نشرها ، الذ هذه الطريقة تمطى حلاً مقارباً للحل التسحيح ، حيث أن الشروط الحدودية للإزاحة قبد حققية تحقيقاً صحيحاً . أما الشروط الحدودية الميلية فقيد حققية تحقيقاً صحيحاً . أما الشروط الحدودية الميلية فقيد

الطريفة المقدمة في هذه البروة يكن جعلها طريقة عامة حيثة تستعمل في حل أي صفيحة بأي شروط حدودية.