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ABSTRACT

A theoretical analysis is presented for interlaminar separation of a through width
central debond in a typical fiber reinforced plastic orthotropic layer, taking into account
the elastic end effects of a matrix rich layer at the delaminating fronts between
debonded and undebonded areas.

The post-buckling behavior of the separated portion with consequent possible
further delamination is analyzed and the critical conditions leading to interlaminar
splitting are determined.

Two differential equations based on beam-column theory are produced for the
debonded and attached portions. These equations have been solved and linked together
by imposing the continuity conditions along the delamination front marking the
boundary between the two parts of the layer. The solution allowed using an energy
release rate criterion to obtain the critical strains and determine their interactions at the
post-buckling stage. Numerical results in graphical form showed that delamination is
not possible unless the debonded part buckles.
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INTRODUCTION

The delamination problem emanating from a pre-existing initial bulge (blister) is
analyzed for fibrous laminated plates in [1]. It has been found that delamination may
well take place while the in-plane load in the blister layer P;, is below the Euler
buckling load Pg. This may not be the case when the initial debonded layer is perfectly
flat when the load is first applied. If a uniform applied strain € is assumed, delamination
will not grow as long as the initially debonded area is flat [2]. However, delamination is
possible if the debonded portion buckles. Therefore, the problem can only be assessed
through post-buckling analysis. If the extent of delamination and its consequences on
the integrity of a certain laminate are the main concern, then, the problem is far more
serious than the case analyzed in [1]. In fact, the behaviour is progressive where a pre-
loading bulge is present and therefore, can be controlled unlike the initially flat debond
case when post-buckling events may be sudden and catastrophic. However, it may
happen that delamination will not occur following buckling, in which eventuality, the

problem can be treated exactly in the same way as when a # 0 as long as the maximum

post-buckling deflection a is small. The other possibility is that delamination will take

place following buckling of the debonded region. This is the subject of the analysis
contained in this paper.

There is one major assumption which lies at the root of the problem: the post-
buckling configuration is taken to have a defined shape. This assumption has been
adopted throughout researches on the problem (e. g. [2] and [3]). The present analysis
takes the problem a step forward by assessing the effect of a resin rich layer on the post-
buckling behavior and delamination.

THEORY

The applied load ‘P’ may be split between the outer and inner layers as shown in
Figure (1). The attached portions of the top layer (Figure 2) may be regarded as two
identical beams on elastic foundations, with a foundation, constant given by the resin
modulus (E;) divided by the resin film thickness (t;) (corresponding to a simple Winker
foundation stiffness). The differential equations governing the behaviour of the
deflected shapes for the bulge and attached portions when loaded by the axial
compressive force ‘P’ are represented respectively by [1];

4 2
dx D) dx
4 2
dVZ1+a2d“;1:0 oczzi (1)
dx dx D
4 2
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dx dx
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Figure 1: Buckling Delamination;
(a)  Pre-loading Configuration,
(b)  Pre-buckling Loaded Configuration,
(c) Buckled Debonded Layer,
(d)  Free body diagram for the delaminated portion.

Winkler foundation

Figure 2: Attached region on winkler foundation.

Journal of Engineering Research Issue (7) March 2007 17



Equations (1) and (2) have the following general solutions

w; =C; cosocx+c—§ (3)
o

wy =e P1X[Cycos(Byx) + Cysin(Byx)] 4)
where B, = /2B sin(¢/2) ; B, = /2B cos(9/2)
and ¢ =arctan/16n* -1 ; n=pa

The constant C; to C4 in Equations (3) and (4) may now be determined by imposing the
continuity conditions of deflection, slope, bending moment and shear force along the
delamination front between debonded and attached portions (point B in Figure (1c)).
The continuity conditions yields;

C cosy+c—§= Y,(C;M, +C,M,) (5a)
a

—Casinu=Y,[-C,(BM, +B,M,)+C,(- BM, + B,M,)] (5b)

_Clazcosﬂ:Yl[Cs(Fle+F2M1)+C4(F1M1_FzMz)] (S¢)

C,a’ sin = Y,[Cy(h, M, — by, M)+ C, (h,M, + h M,)] (5d)

where;

F =B7 -B5, F, =2BB,, M, =sinf,a, M, =cosP,a, h, =3B,83 - B7,
2 3 wy
hy =38R, —B3, Yy =¢ 1, & =Pja, p=aa.

The last three of equations (5b, 5c, 5d) contain only C;, Cs, and C4 and may be solved
simultaneously for these constants. The condition for a non-trivial solution is given by
vanishing of the determinant of the coefficients for C;, C; and Cs4. Thus

—osinp PiM, + P, M; pM, -B,M,
2
3 .

o”sinp  —hM,+h,M; -hM,-h,M,

Expanding the determinant and simplifying Equation (6) reduces to:

2%1!’0\’, (7)

where A =Pa and 1y, =1/25ini(|)/2i

Equation (7) may be solved graphically to yield the critical buckling load as shown in
Figure (3) where both sides of the equations are plotted versus L, noting that at buckling

tanp =
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o =4/Pg /D , where Pg is the critical buckling load for the delaminated layer. The load

Pg may differ from the Euler critical load Pg for a built-in strut because it incorporates

the hinge effect offered by the elastic foundation. This effect, though small, manifests
itself in smaller critical loads corresponding to lower values of E; as shown in Figure

3).
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Figure 3: Graphical presentation of Equation (7).

Given that in general P; < Pg for the problem under examination, it is permissible to
write:

22
o =+/(P;/D) = on/a or Pp = 0):21)

as a solution to Equation (7), corresponding to the least buckling load; where  is less
than unity and, for a certain material, is dependent upon the debond half span length ’a’
as shown in Figure (3). The above dependence is clearly seen from Figure (4) where
®—1 as a— oo. This is to say, for large values of ‘a’ the critical load P, approaches the

Euler buckling load Pg. Another occasion when Pp— Pg is that when the elastic
foundation is infinitely stiff (E;,—o0). In fact, if E; is very large X;—1 [see Equations (4)
and (6)], also A'=Pa —> o [see Equation (2)]; then Equation (7) becomes, tan p = 0
which is possible if p=ay(P;/D)=n or Pj =n’D/a® =P, i.e. the Euler buckling
load for a built-in strut.
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Figure 4: Reduction factor o vs. debonded half span length.

POST-BUCKLING SHAPE
The constants C,, C; and C4 may be expressed in terms of the constant C; using
Equation (5). Thus,

4 2(2
C, = o cosu{1+4n + a2 1)}Cl

m2(1-2n?)
, = CosH o’ (BM; —ByM; ) +h,M, +hyM, C, )
2Y,B,p° | 1-2n’° |
C, = —SOSH o’ (BM, +B,M; ) +h,M; —hM, C,
2Y,B,8% | 1-2n? ]

From Equations (9) and (3), remembering that at buckling & = wz/a, we obtain

3
w; =———2—cos(px/a)+ Y(A' 10
1 1+Y(k') (p/) () (10)
where, 8, = (w,),_, is the debond mid-span maximum deflection, p = ®n, and Y(1")is
a function of A’ given by the following expression

pt+42" +4/1’2p2(;(12 —1)

22'8(p* -22'p)
It is seen from Equations (10) and (11) that for an infinitely stiff elastic foundation
A —>o; @—>1; cos p——1, therefore

Y(4') = cos p (11)
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W, — 87"[1 +cos(nx/a)]= deflection for the built-in case.
The post-buckling maximum deflection shape given by Equation (10) will be
completely defined once 82 is known. Referring to Figure (1), the loading sequence

which leads to buckling consists of assigning a uniform strain € to the laminate which
shortens as shown in Figure (1b), then the delaminated layer buckles Figure (1c), when

the critical strain € =0)27c2D/ azEltl is reached. If we assume that, in going from
Figure (1b) to (Ic), the length of the delaminated layer remains unchanged and its in-

plane direct stress is the same as the buckling stress, (provided 52 is relatively small )
then the approach of the ends of the split as it buckles,

=(2a)e-ep)=> I(dwljz (12)

Equation (12), after substituting for w; from Equation (10) and integrating, gives:-

8a(s—gf 1+ Y(?e')]2

8y = 13
° p(2p —sin 2p) (13)
Substitution from Equation (13) into Equation (10) yields
2(e —ef:)
w, =2a —[cos(px/a)+ Y(\) (14)
p(2p —sin Zp)

ENERGY RELEASE RATE AND ELASTIC STRAIN ENERGY

The critical energy release rate g. can be evaluated once the total strain energy per
unit width in the laminate U is formulated. U may be split into four components Uy, Ug,
U, and Uj,; where Uy and Uy, are, respectively, the bending and direct compression
energies for the delaminated layer, U, is the strain energy of the attached portion and
Ui, 1s the strain energy of the inner layer (layer 2, as shown in Figure (1)). The strain
energy component U, may be evaluated using the equation:

2
2
Ub—2 j d 2L dx (15)
dx
Therefore,
' r 2 .
U, = 2aE1t1(88E - sE' X2p +sin 2p) (16)
2p—sin2p

The other components of energy (Uq,, Uy and Uj,) may be evaluated using the
usual energy formula for direct stress and strain. Thus;
aEltlséz

Uge = (17)

1=vuvy
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¢ —a)E te”
U, - Loelbite (18)
l=vuvy
’ 2
U, = {E2he (19)
l1=vuvy

The total strain energy in the laminate U = Uy + Uy, + Uy + Ujy; given by the
components from Equations (16) through to (19). Can now be used in Equation (20)
below (subject to imposing uniform overall applied strain ‘e’ just sufficient to extend
the already existing delamination with fixed grip conditions) to evaluate the strain
energy release rate g, with the tacit assumption that the strain in the inner layer and the
attached portion will remain unchanged after the debonded layer has buckled. Thus;

dU
__=F 20
i (20)
In a normalized form g becomes;
g, = Eir'e’ ], p +2Q(J-3)- daw’ [1+Q(1-2)]-2aQ(F-1) 1)
© 144a*T(1-v, vy ) ®
where,
Q= [(l — ViV )(Zp + sin 2p)]/(2p —sin 2p); J= i, ; o = dw/da (plotted in Figure (5)
€g

(13 ”»

versas “a” using Figure (3).
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Figure 5: The rate of change of the factor o with debond half span length a.
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NUMERICAL RESULTS AND DISCUSSION
The following data, for unidirectional CFRP laminates [4,5] are used in this
section study the delamination characteristics of an initially flat debonded layer:

E; =138500N/mm?®  ; E, =3380N/mm?; v, =0.3352; v, =0.0223

ty=t,=05mm ; t,=0.105x10"mm ; ¢'=75mm; [ =0.26 N/mm [4].
Numerical computation of Equation (2) revealed that for J<1 (i.e e<eg’) the normalized
strain energy release rate was always negative, thus, no energy was released to
propagate the existing split. Only after J>1 (i.e. € >¢'g) does g, become positive and
therefore delamination is possible. The normalized strain energy release rate is plotted
versus ‘a’ in Figure (6) for various values of J.

"

Critical value on this line

0.5

Normalized strain energy release rate

4 6 8 10 12 14 16 18 20 22 24
Debond half span, a (mm)

Figure 6: Normalized energy release rate vs. debond half span for various load ratios.

The g,=1 horizontal dotted line represents the threshold for delamination growth. For
points above this line splitting is always possible given that the energy release rate
exceeds the toughness of separation I'. It is also seen from Figure (6) that for an applied
strain value e<1.5¢p no delamination will occur for any a>12.75 mm. The
separation between possible and not-possible regions of delamination is shown in
Figure (7) where the critical load ratio J is plotted versus the debond half span a.
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Figure 7: Critical load ratios vs. critical debonded half span.

CONCLUSIONS

A theoretical analysis based on beam-column theory and an energy release rate
criterion, has been presented for the crack propagation of a layered fiber reinforced
plastic strip in compression, in the presence of an initial flat debond. Account has been
taken of a resin rich layer at the delaminating edge. The beam-column and beam on
elastic foundation differential equations have been solved, respectively, for the shape of
this post-buckled layer and the attached portion and the constants which appear in the
solution have been determined through continuity conditions along the delamination
front. The total strain energy has been evaluated for the partially debonded layer, and
therefore the strain energy release rate. A typical set of design curves is given and
discussed which shows the influence of the debonded length, applied strain and resin
stiffness on loads required for splitting. It has been found here that delamination is not
possible unless the delaminated layer buckles.
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NOMENCLATURE
a Debond half span
c' Half attached length of outer layer
Cy, Cy, Constants of integration
C}, C4
D Flexural rigidity of blister
E Young’s modulus
Ei, Es, Young’s moduli of outer, inner and resin, respectively
Es
g Energy release rate
2, Normalized strain energy release rate
J Ratio of applied and buckling strains
k Elastic foundation constant
ya Half span of outer layer
P Applied load
P, P, Load/unit width in outer and inner layers, respectively.
Pg Euler buckling load for delaminated layer
P'e Buckling load for delaminated
t Total thickness of strip
ty, to, t3 Thickness of outer, inner and resin rich layers, respectively
u Axial displacement
U Strain energy/unit width
Ua Strain energy/unit width for attached portion
Uy Strain energy/unit width of bending
Ue Strain energy/unit width of direct compression
Uin Strain energy/unit width for inner layer
Wi Total deflection of blister layer
W2 Deflection of attached portion (beam on elastic foundation)
X Longitudinal variable coordinate
Y(A) Function of A" defined by Eq.(11)
o Square root of ratio between in-plane load and flexural rigidity
B Defined below Eq.(2)
B, B2 Defined below Eq.(4)
r Surface energy tension
3 Max. of post-buckled deflection of debonded layer
K Shortening of blister
K Shortening of undelaminated portion of outer layer
o
Z Total shortening of outer layer
1
€ Applied longitudinal strain
g Critical buckling strain for delaminated layer
E
n Dimensionless ratio defined below Eq.(4)
A Dimensionless term defined below Eq.(7)
M Dimensionless term defined below Eq.(5)
yZ Dimensionless term defined below Eq.(5)
v, Poisson’s ratio with respect to longitudinal fibre and transverse fibre directions (stress in fibre direction)
t
v Poisson’s ratio with respect to transverse fibre and longitudinal fibre directions (stress in transverse

direction)
Common constant (=3.141593)

Defined below Eq.(11)
Defined below Eq.(4)

Defined below Eq.(7)

Reduction factor
Defined below Eq.(21)
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