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ABSTRACT

For many engineers and researchers the simulation of the flow field around
aerodynamic shapes such as airfoils or turbine and compressor vanes is of particular
interest. In these situations the computations are almost carried out using commercial
softwares that are available in the market. Nevertheless, these softwares are always
provided without the source code, and hence they leave no chance for the user to modify
and develop their existing algorithm. In this study, an unstructured Cartesian grid
generator and flow solver was built from scratch in order to simulate inviscid flows past
airfoils. In the grid generator, the ray-casting method is employed to classify the cells in
the computational field to flow, body, or cut cells. In order to find the coordinates of the
cut cells the surface of the given shape is represented by a set of consecutive Bezier
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curves. The governing equations are discretized using the AUSM scheme for the
convective terms and a five-stage Runge-Kutta method for the unsteady terms. The grid
generator based on the ray-casting method and Bezier curves showed good performance
in representing the given geometries despite the simplicity of the method. The flow
solver that is based on the AUSM scheme and Runge-Kutta method showed very good
agreement when compared with the available literature. Work is now in progress to
incorporate some adaptation sensors to enable the solver to adapt the grid during the
solution process.
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INTODUCTION

The growing application field of fluid mechanics in practical engineering projects
and products has demanded the modelling and solution of several flow problems. As a
result, many engineers and researchers are using commercial softwares (FLUENT,
CFX, and NUMECA are examples of flow solving softwares.) to solve their particular
problems. Nevertheless, these commercial, professional, and user—friendly softwares are
always provided without the source code and hence leaving no chance for the user,
either an engineer or a researcher, to modify and / or develop their built in methods and
techniques. By reviewing the different approaches that are commonly used to simulate
both internal and external flows, one finds that there are two main approaches in this
field namely; the flow simulations that are based on body-fitted grids and those that are
based on Cartesian grids. Body-fitted grids, either structured or unstructured, have
gained there popularity through the ease of implementing the boundary conditions while
this is the main challenge when using the Cartesian grids. On the other side, in the case
of body-fitted grids the grid generation process is time and computational resources
consuming process. Moreover, the grid generation process with this approach does not
lend itself to automation and has both computing and memory overheads due to the
metric terms. The Cartesian grid method does not include any transformation of the
physical domain to a computational domain and hence the metric terms are eliminated.
As a result more efficient use of the available memory and shorter computing time are
expected. Having mentioned this and keeping other guidelines in mind, such as the
simplicity of the methods used and programming, an unstructured Cartesian grid
generator and flow solver has been developed and tested on a number of test cases. In
this work, an unstructured Cartesian grid generator and flow solver was built and
developed to solve the flow past aerodynamic geometries. Although the grid generator
is capable of generating Cartesian grids for even more complicated geometries, such as
a complete airplane configuration, the flow solver was only tested on the NACA0012
airfoil for a number of published test cases, see [9]. The unstructured Cartesian grid
generator developed in this work is based on the ray —casting method which is a very
simple method and does not include any floating point operation. The flow solver
employs the AUSM scheme for the discretization of the convective terms and a five
stage Runge-Kutta method for advancing the solution in time.

CARTESIAN GRID GENERATION

The grid generation process can be subdivided into three main tasks: Generation
of a base grid, cells classification process, and determination of the coordinates of the
intersection points where the surface of the body cuts the cells. The generation of a base
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grid is started when the user identifies the required lengths of the computational domain
in both the x and y-directions (Ly and Ly) as well as the required number of cells also in
both the x and y-directions (nx and ny). By dividing the length of the domain by the
number of cells in the x-direction one gets the cell width Ax , the height of the cell Ay is
obtained similarly. An array of cells is then created and the cells are stored in this array
with each cell denoted by its unique identity number that is represented by the array
index. As soon as the cell is inserted in the array, its neighbor’s identity numbers in the
north, south, east, and west directions are stored. The cells that were already created to
form the base grid were all similar, that is; they are not classified according to their
location with respect to the body. This process is very important since the cells that lie
inside the body (body cells) will not be important. On the other hand the cells that lie
outside the body (flow cell) and those lie partially inside and partially outside the body
(cut cells) are very important. The flow cells will be integrated in time to obtain a
solution of the conservation equations, and the cut cells will impose the spatial
boundary conditions required by those equations. In order to classify the cells the ray -
casting method is employed, see [1]. This method is explained as follows: A ray is
started at each corner point of the four corners of the cell to be examined and allowed to
spread out (horizontally or vertically) until it reaches the edge of the computational
domain. This ray is traced and the number of times it intersects the body boundary is
counted. The corner point is considered inside the body if the number of intersection
times is odd. On the other hand, the corner point is considered outside the body if the
number of intersection times is even. Once the four corners of a cell are examined the
cell can be classified and an index is assigned a particular value, for instance zero to
denote flow cells, 1 to denote cut cells, and 2 to denote body cells. To specify wether
the ray intersects the body boundary or not, the body boundary must be represented by
an equation rather than separate points. For this task the Bezier curves were employed.

MATHEMATICAL MODEL
For an inviscid, unsteady compressible, and two dimensional flows with both
mass diffusion and thermal conductivity are neglected, the conservation laws are:

Continuity equation:

op  O(pu) O(pV)
— 4 + =0 )

ot Ox oy

Momentum equation:
x-direction

2
o(pu) O(pu + p) 9(pul)

+ + 0 (2)
ot Ox dy
y-direction
2
o(pV) o(puV) o(pV + p)
+ + =0 (3)

ot Ox oy
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Energy equation:

20e) a[u(pe + p>] . 5[’/(”6 ’ p)] -0 @

ot ox %%

Where p is the fluid density, « is the fluid velocity in x-direction, V is the fluid
velocity in y-direction, p is the pressure and e is the total energy. One more equation

is needed in order to have a number of equations that is equal to the number of
unknowns (p,u,V, p,T,and e). Using the thermodynamic relation ¢ L, = R/(7 -1

and the definition of the specific internal energy # = ¢ 7 , the equation of state can be

reformulated to relate the pressure p to the conservative variable p e as:

L)

p=(r—pe-—pV) (5)
2

Equation (1) to (5) can be rewritten in a dimensionless compact form as:

60 OE  OF

+ + =0 (6)
* * *
ot ox oy
where:
- . 1 p*u* p*V*
? 2 * % %
% % * V  u
~ p*u* - o u +p - P
0 = E = F = P
% % * ok ok E *
PV, pouV ,and pV +p
p*e* u*[p*e*+p*) V*[p*e**'p*j

The dimensionless variables are defined as shown in the nomenclature. It is worth
noting here that the governing equations in the dimensionless form are similar to those
that are in dimensional form, so for reason of simplicity the asterisk will be dropped
from now and as this text goes on.

Initial and Boundary Conditions:

The governing equation, equation (6), is a partial differential equation with both
time and space derivatives and thus requires both initial and boundary conditions.
Specifying the initial conditions is a trivial task since the flow can be assumed to be
parallel flow at the start of calculation. This is a conventional approach which is used
for the solution of inviscid flows, for instance see [2-3]. The boundary conditions, on
the other side, are classified into two types: Far-field boundary conditions and fluid-
body boundary conditions. The far-field boundary conditions are based on the method
of characteristics, see [4], and summarized as follows:
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The fluid-body boundary conditions for an inviscid flow at the wall are
extrapolated from the computational domain. In other words, the flow properties except
the velocity are all extrapolated from the nearest flow cell. With respect to the velocity,
for a nonporous wall, there can be no mass flow into or out of the wall this means that
the flow velocity vector immediately adjacent to the wall must be tangent to the wall. If
n is a unit vector at a point on the surface of the wall, the velocity at the wall can be
given as:

Vie =7 fo =V fo i) ©)

Where V. is the velocity at the cut surface and I7fc is the velocity of the nearest flow

cell.

METHOD OF SOLUTION

The system of the conservation equations, in vector compact form equations (6), comprise
a set of nonlinear partial differential equations containing both space and time derivatives. The
spatial derivatives will be discretized using an upwind-high resolution scheme, namely the
Advection Upstream Splitting Method AUSM scheme, see [5]. The time derivatives, on the
other hand, will be discretized using a five stage Runge -Kutta method.

Discretization of the Convective Terms, the AUSM Scheme:

The AUSM scheme is one of several available upwind schemes that have the
advantage of simplicity in programming without loosing the high accuracy. In order to
explain this scheme, the flux E in equation (6) will be taken as an example. The flux in
the y-direction will be treated similarly. The first step in this scheme is to split the flux
E into convective and pressure terms, and a cell interface velocity u/2 1s introduced

which is used later to identify the upstream (upwind) direction, that is;

Yl 0

- Pl +Py

E=M1/2 pu + LR (10)
pV 0
PH L/R 0
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The interface velocity is given by:
ufy =arf/r Myif> (I

Where a /R is the sound speed at the left or right side with respect to the cell face. The

decision to take either the left or the right value is taken according to the upstream
direction. Mathematically, this can be written as:

() ifu,/ <0
i /<; (12)

(-)%: (), ;‘fu% >0

Substituting equation (11) into equation (10) leads to:

pa 0

- P/ + Py

E=M1/2 pau + LR (13)
paV 0
paH L/R 0

The convective interface Mach number M,/ is defined by combining the wave speed

of left and right running waves, that is;

M,y/y =M[ +Mp (14)

In defining the split Mach number, M} and M}, Liou and Steffen [5] have provided a

second degree polynomial to be used if the flow is subsonic and a first degree
polynomial if the flow is supersonic, that is;

1
. iZ(ML/RJ_rl)Z ngL/R‘g

= (15)
o %(ML/Ri‘ML/RD ifML/R‘>1

The pressure part of the flux £ is calculated similarly by two polynomials provided by
[5] as:

. ig(ML/RiI)Z(ZiML/R) if‘ML/R‘Sl

r g(ML/R i‘ML/RD/ML/R if‘ML/R‘ >1

(16)

It should be noted here that the pressure term of the flux does not undergo any
upwinding as it is clear from equation (13). This is expected because pressure waves
can travel in all directions.
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Discretization of the Unsteady Terms ( Runge—Kutta method ) :

The discretization of the unsteady terms can be performed using either an explicit or
an implicit time integration scheme. In order to avoid the greater memory requirement
of the implicit scheme an explicit five stage Runge-Kutta integration scheme of the
following form is selected:

50 _ 5
60 25O 4 gyar-Re {Q«»]

6@ =50 s ayar-ke {Q(l)j
6D =6D s azar Re S[Qmj

0@ =03 s agni- Re {Q@))

05 -0 agar ke {@V‘)]

oD _ 50

The values of the coefficients «;,, 5 are given, as in [2], by:

ay =0.059 , 0D =0.14 ,a3 =0.273 , 04 =0.5 and as =1.

The time step can be computed by the procedure given by [6] as:

1 1 1 . CFL* Ax
—=—+—— where: Aty =
At Aty Al |u|+a

_ CFL*Ay
yo ‘V‘-#a

,and At

Here CFL is the Courant-Fredrich-Levy number that has a value of 1.0 which is
normally recommended for explicit schemes.

RESULTS AND DISCUSSION
Results of Grid Generation:

A 2D unstructured Cartesian grid for the NACAO0012 airfoil, generated by the
algorithm explained in this paper, is shown in Figure (1). As can be clearly seen, the
grid generated represents precisely this well known symmetrical airfoil. A longitudinal
cross-section of the transportation jet B -747 is taken from [7] and shown in Figure (2).
This figure was digitized using the commercial software "get Data", see [8], in order to
extract a set of data points that represent the configuration of the airplane. This data
was fed to the grid generation algorithm described as an input data file that contains a
set of points with each point represented by its x and y coordinates and the resulting
grid is shown in Figure (3). Comparing Figures (2) and (3), it is noticed that the
resulting Cartesian grid is a good representation of the given plane fuselage.

Journal of Engineering Research Issue (9) March 2008 27



)i

¥

Figure 1: A 2D unstructured Cartesian grid of the NACA0012 airfoil generated by the ray

—casting method.
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Figure 2: The geometrical configuration of the B-747 jet, as given by [7].
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Figure 3: The grid of the B-747 jet generated by the ray —casting method .

Solution of the Inviscid Flow past NACA 0012 Airfoil:

The standard test cases of the AGARD working group 07, see [9], were chosen as
validation test cases for the methods explained for flow solving of the inviscid flow.
These standard test cases are summarized in Table (1).

Table 1: Values of the Mach number and the angle of attack of the AGARD test cases 01 to 04

Test case M., Angle of attack 6
AGARDO1 0.8 1.25
AGARDO02 0.85 1.00
AGARDO3 0.95 0.00
AGARDO04 1.2 0.00

The AGARD 01 test case is characterized by two shock waves on the upper and lower
surfaces of the airfoil. The lower shock wave is weaker than the upper one, and catching
this weak shock wave is a measure of the accuracy of the solution. The Mach number
contours and the pressure contours are shown in Figures (4) and (5).
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Figure 4: Mach number contours for AGARDO1 test case.
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Figure 5: pressure contours for AGARDO1 test case.
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Figure 6: CP distribution on the upper and lower surfaces of the airfoil for AGARDO1 test case.
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Figure 7: Mach number contours for AGARDO?2 test case
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Figure 5: pressure contours for AGARD(2 test case.
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Figure 9: CP distribution on the upper and lower surfaces of the airfoil for AGARDO02 test
case.
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Figure 10: Mach number contours for AGARDO3 test case.
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Figure 11: pressure contours for AGARDO3 test case.
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Figure 12: CP distribution on the upper and lower surfaces of the airfoil for AGARDO03
test case.

The CP distribution on the upper and lower surfaces of the airfoil is shown in
Figure (6) compared to the solution given by [9] who have used body-fitted structured
grids to obtain their solution. The agreement of the present calculation with that of
Pulliam and Barton [9] despite the different grids used in the two solutions is obvious.

Similar observations are made for the AGARDO?2 test case with the only exception
that the two shock waves on the upper and lower surfaces of the airfoil are of
comparable strengths; see Figures (7) to (9).

The transonic flow of the AGARDO3 test case is denoted as the fish tail shock
wave because two oblique shock waves are emanating from the trailing edge with an
angle of about 55° as measured from the chord, as shown in Figures (10) and (11). A
comparison of the CP distribution is shown in Figure (12) for the upper surface and the
lower surface. Again it is observed that there is a good agreement between the two
solutions.

The AGARDO4 is similar to the AGARDO3 except that the detached shock in
front of airfoil nose is more obvious as seen in Figures (13) and (14).The comparison of
the CP distribution as computed in this study with that of reference [9] shows again a
good agreement as it is noticed in Figure (15).
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Figure 13: Mach number contours for AGARDO?2 test case
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Figure 14: pressure contours for AGARDO3 test case.
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CONCLUSIONS

The method of grid generation (the ray-casting method) has shown a very good
performance despite its simplicity. It is also worth noting that the Bezier curves are very
powerful tool that can be simply implemented in a computer program to represent
curves of unknown shapes.

Discretization of the convective terms of the conservation laws using the AUSM
method together with the use of the five-stage Runge-Kutta method for the
discretization of the unsteady terms have led to solutions that are in good agreements
with other lengthy and time consuming schemes. Having stated that, one can conclude
that writing his own code and / or using an open source — ready to use — softwares
provide(s) a very good chance to enrich one's knowledge and experience.

Another conclusion which can be extracted from this work is that the Cartesian
approach for flow simulations is easier to both understand and program than the body
fitted grid approach since the former does not include any transformation of the physical
domain to a computational domain.
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NOMENCLATURES:

Latin

a speed of sound, m/s
Cy specific heat at constant volume, kJ/(kg K)

c Chord length, m

CP Coefficient of pressure

e Specific total energy, kl/kg

e Dimensionless specific total energy e/ ag

Ly,Ly Lengths of the computational domain in x and y directions, m
M Mach number

ny,ny Number of cells in x and y directions

Pressure, kPa

Dimensionless pressure P/(p, ag)

Gas constant, kJ/(kg K)
Temperature, K

*

N N v v

Dimensionless temperature 7 /7,
t Time, s

~

. . . t-a
Dimensionless time —<
c

u Component of velocity vector in x direction, m/s

i Specific internal energy, kJ/kg

u Dimensionless component of velocity vector in x direction u/a,
1% Velocity vector

14 Component of velocity vector in y direction, m/s

v Dimensionless component of velocity vector in y direction V/a,

Horizontal coordinate, m

=
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y Vertical coordinate, m

Greek
) Density, kg/m’
e Dimensionless density p/p,
0 Angle of attack, radian
v specific heat ratio

Subscripts
0 Stagnation condition
© Free stream value
fe The nearest flow cell to the cut surface
ed Computational domain
sc Cut surface

Superscripts
* Dimensionless variables
n Solution at time level n
ntl Solution at time level n+1
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