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ABSTRACT 

Quad-tree Method is used to triangulate the polygonal two dimensional domains. 
The method is based on the deformation and local modification of an easily obtained 
grid which is started by building the balanced quad-tree construction that is bounded to 
be no leaf quad and can have more than two neighbours. Finally triangular elements 
were created using predefined templates. Efficient navigation system for the quad-tree 
construction is an important requirement to effectively perform the balancing condition 
and triangulation process.  

The Finite element (FE) software developed contains all the required algorithms. 
Results were obtained for the convergence behaviour and the performance of each 
element. All elements show acceptable results especially for the Eighteen Degree of 
Freedom (DOF) triangular elements where the calculated maximum deflection 
converges to the exact solution as the total number of degrees of freedom increases. 
 
KEYWARDS: Finite Element; Plate Bending; Triangular Finite Elements; Mesh 

Generation.  
 
INTRODUCTION 

In recent decades, the finite element method has become a mainstay for industrial 
engineering design and analysis. According to the applications (thermal, structural, 
mechanical, fluid, electromagnetic, etc. problems), numerical simulation by the finite 
element method requires the mesh data of the domain under consideration which can be 
reduced to an object or a set of objects. Whatever the case may be, the mesh must 
contain all useful information when considering the different steps in the numerical 
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computation (geometry, definition of loads, computation of matrices, solution of 
systems, visualization of results, etc.) [1]. 

The derivation and development of plate bending elements has been a favourite 
topic of researchers and many different plate elements exist. Therefore a number of 
additional assumptions may be made for these theories. The reason that these elements 
receive so much attention is that there are different theories depending on the thickness 
of the plate [2]. 

The simulation of various physical phenomena (in chemistry, thermal analysis, 
electromagnetism, mechanics of solids, fluid mechanics, etc.) can be written in terms of 
partial differential equations which can be solved numerically using the finite element 
method [1]. The essence of this method consists of calculating approximate values of 
the solutions desired (temperatures, stresses, pressure, velocity, magnetic field, etc.). 
These values are computed at some points in the domain of interest, called the nodes. 
From this set of values, it is possible to derive the solution values at any position; this 
computational step is based on the use of chosen interpolation functions.  

The numerical calculation requires, as a first step, the construction of a mesh of 
the domain where the problem is posed in order to define the nodes. This phase of pre-
processing is very important. In the sense that the generation of a valid mesh in a 
domain with a complex geometry is not a trivial operation and can be very expensive in 
terms of the time required. On the other hand, it is crucial to create a mesh which is well 
adapted to the physical properties of the problem under consideration, as the quality of 
the computed solution is strongly related to the quality of the mesh [1]. 

It could be argued that plate type structures, being three-dimensional could be 
analyzed using three dimensional brick elements. However, because the thickness of the 
plate is much smaller than the other dimensions, aspect ratio error would be induced in 
the analysis resulting in poor accuracy of results. On the other hand, if the three-
dimensional element were reduced in size so that the other dimensions of the element 
were comparable with the thickness, the error due to the aspect ratio would be 
eliminated. However, the number of elements required to achieve this, would result in a 
very large model which would require a massive amount of computer resources to run 
[2]. 

Meshing can be defined as the process of breaking up a physical domain into 
smaller sub-domains (elements) in order to facilitate the numerical solution of a partial 
differential equation. While meshing can be used for a wide variety of applications, the 
principal application of interest is the finite element method. Surface domains may be 
subdivided into triangle or quadrilateral shapes, while volumes may be subdivided 
primarily into tetrahedral or hexahedra shapes. The shape and distribution of the 
elements is ideally defined by automatic meshing algorithms.  

At the inception of the finite element method, most users were satisfied to 
simulate vastly simplified forms of their final design utilizing only tens or hundreds of 
elements. Qualified preprocessing was required to subdivide domains into usable 
elements. Market forces have now pushed meshing technology to a point where users 
now expect to mesh complex domains with thousands or millions of elements with no 
more interactions than the push of a button.  

The automatic mesh generation problem is that of attempting to define a set of 
nodes and elements in order to best describe a geometric domain, subject to various 
element size and shape criteria. The algorithm started by building the construction of the 
Quad-tree (the selected method for the base grid), then applying the balancing and 
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warping conditions. The final mesh then obtained using some pre-defined triangular 
templates. 
 
TRIANGLE ELEMENT  
 
 Shape Function 

The three nodes triangle element used and the parent element can be represented 
by real element after transformation as shown in Figure (1). The shape function for this 
element can be expressed in terms of interpolation functions and its nodal coordinates, 
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As seen before, Φi is the interpolation function for the node i and n is the total number 
of nodes. For linear element, the nodes of the triangle element that should be included 
are only the three corner nodes, thus' the interpolation functions can be assumed as, 

ηξφ iiii cba ++=                      (3) 
For (i=1) the interpolation function Φ1 will be unity at node 1 and zeros at nodes 2 and 
3 thus, 

 
Figure 1: Parent and real triangle elements 
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Similarly for (i=2, 3) the interpolations will be, 
ξφ =2                         (5) 
ηφ =3                         (6) 

It's clear here that this geometric transformation functions are linear since we already 
had a linear transformation for the real coordinates, so its nature that could be only the 
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A particular type of element is defined by a number of conditions that can be 
stated [4]: 

• The element shape witch can be triangle, rectangle, etc… 
• The coordinates of the interpolation nodes. 
• The number of degrees of freedom. 
• The definition of nodal variables. 
• The polynomial basis of the approximation. 
• The degrees of inter-element continuity that must be satisfied the number of 

displacement variables defined at each node will define the number of degrees of 
freedom per element that presents the order of polynomial that can be used to 
model the displacement variables within the element. 

It’s important here to notice that the criteria for convergence depend on the following 
element conditions. First the requirement of completeness which means that the 
displacement functions of the element must be able to represent the rigid body 
displacements and the constant strain state. On other hand the completeness means that 
no approximate lower-order terms of series should be omitted whilst higher-order terms 
are included. This is based on the fact that the trial functions must be capable of 
presenting both a constant value of the field variable and a constant first partial 
derivative. 
Second the requirement of compatibility which means that the displacement within the 
elements and across the element boundaries must be continuous. Physically, 
compatibility ensures that no gaps occur between the elements when the assemblage is 
loaded. 

Figure (2) shows the polynomial terms. These terms should be included to have 
complete polynomials in x and y for two dimensional analysis. It is seen that all possible 
terms of the form xa yb are present, where a+b=k and k is the degree to which the 
polynomial is complete. 
 

 
Figure 2: Polynomial terms in two-dimensional analysis, Pascal triangle 
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The above figure shows important notation for polynomial spaces. The spaces Pk 
correspond to the complete polynomials up to degree k. In addition the figure shows 
also the polynomial spaces Qk which correspond to the 4-node, 9-node, and 16-node 
elements, referred to as Lagrangian functions. In practice, a frequently make 
observation that a satisfactory finite element analysis results have been obtained using 
incompatible (non-conforming) elements [4]. 
 
 Elements for C1 Problems 
 Constructing two-dimensional elements that can be used for problems requiring 

continuity of the field variable w  as will as its normal derivative 
n
w
∂
∂  along element 

boundaries, is far more difficult than constructing elements for C0 continuity alone. To 

preserve C1 continuity we must be sure that w  and 
n
w
∂
∂  are uniquely specified along the 

element boundaries by the degrees of freedom assigned to the nodes along a particular 
boundary. As point out in many studies, the difficulties arise from the following 
principles [5]: 
• The interpolation functions must contain at least some cubic terms, because the tree 
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• For the nonrectangular elements C1 continuity requires the specification of at least 

the six nodal values w ,
x
w
∂
∂ ,

y
w
∂
∂ , 2

2

x
w

∂
∂ , 2

2

y
w

∂
∂  and 

yx
w
∂∂

∂ 2

 at the corner nodes. For 
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It’s sometimes very convenient to specify only w , 
x
w
∂
∂  and 

y
w
∂
∂  at corners, but when this 

is done, it is impossible to have the second derivative continuity at the corner nodes. 
Analysts first began to encounter difficulties in formulating elements for C1 

problems when they attempted to apply finite element techniques to plate bending 
problems. For such problems the displacement of the mid plane of the plate for 
Kirchhoff plate-bending theory is the field variable in each element and interelement 
continuity of the displacement and its slope is a desirable physical requirement. Also, 
since the functional for plate bending involves second-order derivatives, continuity of 
slope at element interfaces is a mathematical requirement because it ensures 
convergence as element size is reduced [5].  

 
Three Nodes, Nine DOF Triangular Element  

As we notice the plate bending element still capable to represent the element 
field variables with satisfactory amount of accuracy even for the elements of non-
conforming type. This type of element shown in Figure (3) is one of the first elements 
used for plate bending problems and it shows a good convergence results. Nine degrees 

of freedom, three degrees of freedom per node w , 
x
w
∂
∂  and 

y
w
∂
∂ . 
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Figure 3: three nodes nine degrees of freedom triangular element 

 
Here we meet the first difficulties, that there are no complete polynomials available to 
represent nine degrees of freedom (see Figure (3)); the complete cubic polynomial will 
have ten unknowns (P3). One of the choices we have is that one of the terms ξ2η or ξη2 
is omitted. In this case we use the following polynomial for our displacement 
interpolation weighing functions. 
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To obtain the nine unknowns (ai, i=1, 2… 9) we need to define the condition of the 
nodal weighing values (Ni). 
Finally the following expression could be obtained 

fGa =                       (10) 
In which G is a 9x9 matrix. 

Indeed it’s not easy to determine an explicit inverse of G and the stiffness 
expression, especially when the vector f contains some non-numerical terms or for the 
elements of higher order. This was evaluated in this study by using MatLab software. 
Notice that the matrix G will not change for the rest of displacement weighing 
functions, while the only change appear on the vector f. Substituting back into equation 
(10) and using Mat Lab 
 
 Three Nodes Eighteen DOF Triangular Element 

This type of element shown in figure(3.4) is one of the conformal plate bending 
elements, the element is eighteen degrees of freedom, six degrees of freedom per node 
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Figure 4: three nodes eighteen degrees of freedom triangular element 
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As we mentioned before the compatibility requirement for C1 problems require 
the above six field variables to be continuous at the corner nodes. Here we meet the 
same complexity that we have seen in the nine DOF triangle elements, where also there 
are no complete polynomials available to represent eighteen DOF (see Figure (4)). The 
complete quartic polynomial (P4) has only fifteen terms. 

The following suggested polynomial is complete up to terms of fourth order and 
contains three terms of fifth order. The last three terms are chosen to force the normal 
derivative on each side to be cubic in ξ and η, on other hand the parabolic variation of 
the normal slope is not uniquely defined by the two end nodal values and hence resulted 
in the non-conformity [3]. 
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To see how the normal derivative is a cubic polynomial on each side of the real element, 
let us assume that the parent element shown in figure (3.5) to be the real element. 
 

 
Figure 5: Parent elements normal derivatives 

 
Similarly as we made previously to obtain the eighteen unknowns (ai, i=1,2,…,18) we 
need to define the condition of the nodal weighing values(Ni) 
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In which the left hand matrix in equation (10) is the G(18x18) matrix was obtained. 
Similarly, the rest vectors are expressed in the same manner by shifting the non-zero 
values six spaces and replaced by zeros for every six intervals. Substituting back into 
equation (10) and using MatLab. 
 
Six Nodes Eighteen DOF Triangular Element 

This type of element shown in Figure (6) it consists of six nodes, Three corner 

nodes and three mid side nodes, each node has three degrees of freedom w , 
x
w
∂
∂  

and
y
w
∂
∂ . 
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Figure 6: six nodes eighteen degrees of freedom triangular element 

 
The suggested polynomial is the same polynomial used in the above element (equation 
(11)) which is complete up to terms of fourth order and contains three terms of fifth 
order. Similarly as we made previously to obtain the eighteen unknowns (ai, 
i=1,2,…,18) we need to define the condition of the nodal weighing values(Ni). In a 
matrix form of equation (3.10) in which the left hand side is the G (18x18) matrix. 

Similarly, the rest vectors are expressed in the same manner by shifting the non-
zero values three spaces and replaced by zeros for every three intervals. Substituting 
back into equation (10) and using MatLab.  
 
RESULTS ANALYSIS AND DISCUSSION 

The complete finite element package programme has been done before [6]. All 
algorithms were written in Visual Basic. The above meshing method and other pre-
processing tools plus the required analysis functions are all made in one project. The 
programming part contains also some tools for the post-processing stage providing 
some features for the analyst to view the tabular and graphical results. The results 
discussion made for nine different cases. Those cases are modelled and analyzed using 
the three available elements. Results accuracy and convergence discussion was made for 
each of them. 

Triangular elements are more versatile than rectangular elements because they 
can be used for the analysis of plates having various boundary shapes, such as skew or 
curved bridge decks [7]. At this point the use of triangular elements for the solution of 
plate bending problems is considered. 

All elements show an acceptable results specially for the eighteen DOF 
triangular elements where the calculated maximum deflection converges to the exact 
solution as the total number of degrees of freedom increases. The Nine DOF element 
also presents results close to the exact solution but still incapable to insure the 
convergence criteria as we notice in the fixed edges square and circular plates. 

In general the tabular outputs presents a reasonable cost of increasing the 
element degrees of freedom to eighteen, this can be even more clarified in the 
complicated curvature cases. We should notice here that the presented results could be 
more accurate with no more cost of the number of nodes and elements by involving the 
symmetric advantages witch is available in all the above cases. 
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Table 1: Circular fixed edges plate wmax error% for all elements 
 

No. Case NN NE TDOF Cal. 
Wmax 

Ref. 
Wmax 

[Error%] 

  3N 9DOF Tri Element       
1 45 68 135 -0.68524 2.8113% 
2 157 276 471 -0.70582 5.8982% 
3 281 484 843 -0.68280 2.4450% 
4 549 940 1647 -0.75699 13.5755% 
5 601 1124 1803 -0.69716 4.5989% 
6 

Circular fixed plate 

821 1484 2463 -0.67211 

-0.66650 

0.8404% 
          
  3N 18DOF Tri Element       

1 21 24 126 -0.81328 22.0215% 
2 45 68 270 -0.71016 6.5506% 
3 97 156 582 -0.68905 3.3833% 
4 157 276 942 -0.70612 5.9443% 
5 253 428 1518 -0.68014 2.0462% 
6 

Circular fixed plate 

281 484 1686 -0.65775 

-0.66650 

1.3131% 
          
  6N 18DOF Tri Element       

1 65 24 195 -0.62478 6.2601% 
2 125 52 375 -0.69164 3.7711% 
3 157 68 471 -0.64612 3.0578% 
4 349 156 1047 -0.65065 2.3780% 
5 589 276 1767 -0.65918 1.0994% 
6 

Circular fixed plate 

933 428 2799 -0.65239 

-0.66650 

2.1172% 
 

CONCLUSIONS 
Triangle element for three nodes and Nine DOF is one of the non-conformal 

element type which still able to simulate the plate bending behaviour with an acceptable 
range of error. This simple element has also the low cost advantage since its only Nine 
DOF element. For more complicated elements we derive three nodes Eighteen DOF 
triangular elements, this element insures the Compatibility and Completeness conditions 
which classifies the element as one of the conformal type elements. 

Numerical results for the maximum deflection in a number of cases made in this 
study. By using different number of Total Degrees Of Freedom (TDOF) results of 
deflection were all converge to the theoretical exact solution. The last element derived 
was a higher order triangle element of six nodes and Eighteen DOF, the element has the 
same interpolation function with the same nodal DOF used in the first element. 
However, the cost of increasing the element Degrees Of Freedom and their trial 
functions order was reasonable.  
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