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ABSTRACT

Two-dimensional natural convection heat transfer in a differentially heated square
cavity was examined numerically. The left sidewall of the cavity was heated, while the
right side was kept at constant lower temperature. The top and bottom walls were
adiabatic. The theoretical study involved the numerical solution of the Navier-Stokes and
energy equations by using finite volume method. A computational code based on the
SIMPLE algorithm was used for the solution of the system of mass, momentum, and
energy transfer governing equations. The prepared numerical solution was capable of
calculating the velocity, stream function and the temperature fields of the computational
domain. A computer program in (FORTRAN 90) was used to carry out the numerical
solution.

The problem has been analyzed and made dimensionless. The non-dimensional
governing equations were solved using finite volume method. The enclosure was assumed
to be filled with air of a Prandtl number of 0.71. The problem was examined for different
values of Rayleigh numbers in the range from 103 to 108. It was found that the heat transfer
was dominated by conduction for small Ra of 103 and began to be dominated by
convection with increasing Ra. In order to validate the numerical model; average Nusselt
number, local Nusselt number along the hot wall, its maximum and minimum values and
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the locations where they occur, the maximum and minimum velocity values and their
corresponding locations for all values of Ra are compared with previous works. The
model results were found to be in an excellent agreement with previous literature results
which validate the present computational model. The model predictions of the maximum
local Nusselt number and the average Nusselt number were within 0.22% and 0.7%
respectively. The results of streamlines and isotherms are compared with data found in
litrature and an acceptable agreement was found.

KEYWORDS: Natural Convection; Finite Volume Method; Nusselt Number; Square
Enclosure; Rayleigh Number; differentially heated cavity.

INTRODUCTION

Buoyancy-driven convection in a square cavity with differentially heated
isothermal walls is a prototype of many industrial applications such as thermal insulation,
cooling of electronic devices, solar energy instruments, nuclear reactors, heat-recovery
systems, room ventilation, etc. Buoyancy driven flows are complex because of essential
coupling between the transport properties of flow and thermal fields.

This research presents a computational method of study to obtain the solutions of
the buoyancy-driven laminar flow heat transfer in a two-dimensional natural convection
of an air-filled cavity. There are numerous commercial CFD codes available on the
market. They are user-friendly robust and convenient. It’s easy to perform a CFD
simulation by using a commercial CFD code. However, the solver is often operated as a
“black box”; the encapsulation of the commercial codes makes them blind to the users.
User has no access to the detailed codes and cannot debug the program, which limits its
function in the teaching and research activities because researchers always need full
control of the codes and want to keep track of the change of every variable.

RESEARCH OBJECTIVE
Analysis of heat transfer within the fluid flow is important since it has many
applications in industries such as energy conservation process, energy storage,
meteorology and climatology. Numerical simulation plays an important role in these areas
because experiments are often costly. The objectives of this research are meant to:
I.  Study the phenomena of natural convection inside a two-dimensional enclosure,
which is differentially heated and cooled from the vertical walls.

ii. Develop Mathematical formulation of the physical problem along with the
boundary conditions for a laminar flow in a differentially heated cavity.

iii.  Develop a program based on a finite volume method (FVM) and to validate the
applied numerical method for the classical two-dimensional square cavity.

iv.  Investigate and determine the influence of Rayleigh number, Ra, on the velocity
and temperature fields inside a two-dimensional square cavity.

LITERATURES SURVEY

Natural convection in rectangular enclosure has been studied for many years.
Batchelor (1954) [1] formulated the problem of natural convection in a rectangular cavity
where heat transfer characteristics at different Rayleigh numbers were analyzed. Wilkes
and Churchill (1966) [2] developed finite difference scheme to study natural convection
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in a long horizontal enclosure of rectangular cross section with differentially heated
vertical walls. They obtained transient and steady state isotherms and streamlines for wide
range of Grashof numbers and different aspect ratios.

De Vahl Davis (1983) [3] presented benchmark numerical solution of natural
convection of a square cavity. The study is performed for air with Prandtl number 0.71
and for Rayleigh number changing from 103 to 10°. The governing equations of motion
and heat transfer are solved on several mesh sizes by finite difference method. They
tabulated values of average Nusselt number on the vertical boundaries of the cavity. The
maximum horizontal and vertical velocities and the maximum absolute value of the
stream function at four different Rayleigh numbers for various grid sizes are used by
many researchers to check the accuracy of the solution obtained.

Henkes et al (1990) [4,5] carried out two-dimensional calculations in a square
cavity which was heated from the vertical walls. The governing equations are solved
using several mesh sizes by finite volume method. They used three different discretization
schemes; the second-order central differencing, hybrid scheme and first-order upwind
scheme. The central difference scheme was found to give the most accurate solutions.
The computations covered both laminar and turbulent flows with Rayleigh numbers,
ranging up to 10 for air and 10° for water. The last streamline pattern of Ra > 5 x 10°
contained four asymptotic structures, a vertical boundary layer along the heated wall, a
core region, a corner region and a horizontal layer. For increasing Ra, the core became
thermally stratified and had horizontal streamlines. For Ra — oo, the Navier-Stokes
solution along the vertical wall converged to the boundary layer solution.

Le Queéré (1990) [6] has revisited the benchmark results, and he also added
benchmark results for two new cases: air at Ra = 107 and air at Ra = 10 Le Quere
employing pseudo-spectral Chebyshev collocation method in order to solve the Navier-
Stokes and energy transport equations written in primitive variables under the Boussinesq
approximation. A very important findings are the detachment region at the horizontal
adiabatic walls and the large zone of linear thermal stratification of the core. For
increasingly higher Rayleigh numbers the flow eventually turns to be unsteady. The onset
of the first transition to periodicity and the physical description of the instability
mechanism are still in question.

Many researchers, [7, 8, 10, 11] had contributed to the subject, by either proposing
a method of solution or by proposing the mathematical numerical model and the suitable
grid size generation.

In this study, the effect of Rayleigh number on the flow patterns and the resulting
heat transfer is determined. The numerical technique based on the finite volume method
(FVM) is applied and a non-uniform grid size is generated. The results at different
Nusselt numbers, which represent the rate of heat being transferred, are presented in
tables. Stream function and isotherms contours, which demonstrate the fluid flow and
thermal distributions inside the cavity, are also given.

MATHEMATICAL MODEL

The mathematical model for the problem under study consists of a set of governing
equations equipped with the boundary conditions so that the number of equations are the same
as the number of unknowns. Figure (1) shows a vertical section in the square cavity, L= H, with
the boundary conditions shown on the vertical right and left walls, while the horizontal walls ,
top and bottom, are considered adiabatic.
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Figure 1: Schematic diagram of the cavity

In building the mathematical model, assumptions of two-dimensional problem
without viscous dissipation and with constant properties are made. Gravity effects act in
the vertical direction only. Radiation heat exchange was assumed negligible. The
governing equations are:

Continuity equation:

olpy) oV _ (1)
OX oy
X-momentum equation:
0 0 op 0, ou 0, au
—(puu)+—(pvu) =——+ —(u—)+—(u—) +S 2
aX(pU) ay(/OV) ™ aX(,UaX) ay(ﬂ@y) e )
Where,

0, ou, 0, ov o| 2 ,0u ov
S = (u)V+—(uD) |+ = =2 y(=+==
m {ax(”axhay(“ay)}ax{ 3ﬂ(6X+ay)}+/09x
Y-momentum equation:
0 0 op o, ov, 0, ov
—(puw)+—(owW)=——+—(u—)+—(Wu—)+S 3
aX(le) ay(pv) o ax(“ax) ay(”ay) my ©)

Where,

o0, ou, O, ov o| 2 ,0u ov
Sy :[&(ﬂ&)+5(#5)}+5{—§ﬂ(&+5)}ﬁ0§1y

Energy equation:

d 9, 0T 4
o (reuT) =520 (4)

Where the subscript i indicates the tow coordinates x and y, and u; is u when x; is X and v
when x; is y.

The governing equations are transformed into non- dimension forms using the
following non- dimensional variables:
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The resulting governing equations are:

Equation of continuity

opU \
oX oY
x-Momentum equation
[ a( au)
ou ou oP  [PrioX\" oX (6)
PU—gpV— =t | —
X oY oX Ra a( auj 0 [au avj
oy "oy ) ax\"lax ey
y-Momentum equation
[ o ( ov
/ @((”M]+ 7
puﬂ‘f‘pvﬁ:—ﬁﬁ‘ Pr + pb (7)
oX o oY VRa a( av) a( (au avD
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Thermal energy equation
00, oo _ 1 i{ %} 1 i[ %} ®)
Prax TP oy T JRaprox | Y ox | Jrapr ov | Moy

Boundary Conditions

The boundary conditions of velocity and temperature fields are shown in
Figure (1) and are given below:

U \Y 0
S1  West Wall 0 0 Omax atall Y's, X=0
S2  Top Wall 0 0 % =0 atall X's, Y=1. 9)
S3  East Wall 0 0 Omin atall Y's, X=1.
S4  BottomWall 0 0 2—5 =0 atall X's, Y=0

The equations (5 to 9) represent the complete mathematical model to be numerically
solved. The rate of heat transfer is expressed in terms of local Nusselt number, Nu,
at the heated surface as follows:

00
Nu = -2 10
u OX | o ( )
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The average Nusselt number, Nu, is defined by:

(_59) ay (12)

Noting that at y=0, Y=0 and at y=H, Y=1

Grid distribution

At low Rayleigh numbers, non-uniform grid spacing is not essential. At higher
Rayleigh numbers, one encounters steep velocity and temperature gradients. Fine grid
spacing is required close to the wall to resolve these gradients. The use of non-uniform
grid spacing allows an economical distribution of grids in the calculation domain. For
laminar calculations, a sine function distribution for the x and y directions is used.

X“(i)=.i—1sin(2’z’i], =i i (14)

min ? "max

(15)

W) J 1 (2]
H 2

j! J = jmin' jmax

Jmax Jmax

Notice that iminz\]minzz, ima)(= N|'2, JmaszJ'z

RESULTS AND DISCUSSIONS:

Grid Sensitivity Check

Test for the accuracy of the grid sensitivity is examined for the arrangements of five
different non-uniform grid systems with the following number of elements: 1600, 2500,
3600, 4900 and 6400. The results are shown in Table (1). From these comparisons, it is
suggested that 6400 non-uniform elements are sufficient to produce accurate results.

Table 1: Comparison of the Results for Various grid dimensions at Ra = 10° and Pr = 0.71.

Elements Nusselt Number, Nu

1600 4.502
2500 4.509
3600 4.509
4900 4510
6400 4..519

Code Validation

In Table (2), a comparison is given between the present laminar solution and
numerical results found in the literature. The mean Nu along the hot wall, the maximum
and minimum values of Nu, the maximum and minimum velocities and their locations
are all compared. The present results are fount to have an excellent agreement with the
benchmark solution of De Vahl Davis [3] for all values of Ra, and they are within 2%
with results of Markatos and Fusegi et al.
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Table 2: Comparison of 2d DHC flow results with the benchmark data of [dVD, Barakos,
Fusegi , A.D’Orazio ,Le 91, Puragliesi] for Ra = 10°, 104, 105, 10, 107, 108.

[dVD83] | [ Barakos] [ Fusegi] | | A'D']Ora"‘i" Present
Nu 1.118 1.114 1.105 1.117 1.117
N, 1.505 1.581 1.420 1.501 1.55
2, Position (y/H) 0.092 0.099 0.083 0.086 0.104
T Nl e 0.692 0.670 0.764 0.698 0.655
é Position (y/H) 1.000 0.994 1.000 0.953 0.896
LT - 0.136 1.53 0.132 0.136155 0.135946
Position (y/H) 0.813 0.806 0.833 0.8125 0.813887
Uy 0.138 1.55 0.131 0.13813 0.138676
Position (x/H) 0.178 0.181 0.200 0.1797 0.167802
[dVD&83] [ Barakos] [ Fusegi ] [ A.D’Orazio ] Present
Vu 2.243 2.245 2.302 2.235 2.243
N, 3.528 3.539 3.652 3.507 3.53
« | Positon (y/H) 0.143 0.143 0.623 0.148 0.104
E Nz 0.586 0.583 0.611 0.584 0.546
I el
S | position (y/H) 1.000 0.994 1.000 0.984 0.992
T 0.192 0.193 0.201 0.1992118 0.192118
Position (y/H) 0.823 0818 0.817 0.8203 0.8322
- 0.234 0.234 0.225 0.234755 0.233624
p;:;m (x/H) 0.119 0.119 0.117 0.1172 0.11867
[dVD83] [ Barakos] [ Fusegi ] [ A.D’Orazio ] Present
Nu 4519 4.510 4.646 4504 4519
Nu,.. 7.717 7.636 7.795 7.658 7.71
v Position (y/H) 0.081 0.085 0.083 0.088 0.0787
? Nu,,, 0.729 0.773 0.787 0.728 0.712
Cfg Position (y/H) 1.000 0.999 1.000 0.990 0.998
T - 0.153 0.132 0.147 0.15331 0.135197
Position (y/H) 0.855 0.859 0.855 0.8529 0.865943
L 0.261 0.258 0.247 0.26146 0.256848
Position (x/H) 0.066 0.066 0.065 0.0637 0.067392
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[dVD83] [ Barakos] [ Fusegi ] [ A.D’Orazio ] Present
a 8.800 8.806 9.012 8.767 8.79
Vi 17.925 17.442 17.670 17.288 17.5
+ TRAT
- Position (y/H) 0.0378 0.0368 0.0379 0.0441 0.0396
S - 0.989 1.001 1.257 0.998 1.04
1] AV S min
52 Position (y/H) 1.000 0.999 1.000 0.990 0.988
w 0.079 0.077 0.084 0.07929 0.078337
i
Position (y/H) 0.850 0.859 0.856 0.8529 0.865943
v 0.262 0.262 0.259 0.2664182 0.262141
Position (x/H) 0.0379 0.039 0.033 0.0392 0.039597
[Le9l] [ Puragliesi ] Present
Vu 16.523 16.5231 16.44
Nt 39.39 39.3947 39.2
o, | Position (/H) 0.018 - 0.0156
= | Wit 1.366 - 1.54
C‘g Position (y/H) 1.000 - 0.996
- 0.0470 0.0470 0.052859
Position (y/H) 0.879 0.8793 0.881325
Voo 0.2211 0.2211 0.264308
Position (x/H) 0.021 0.0213 0.020304
[Le91] [ Puragliesi ] Present
u 30.225 30.10 30.7
- - 2
Nt 87.24 84.2
- Position (y/H) 0.008 - 0.00815
— 2
| Mt 1.919 2.69
§ Position (y/H) 1.000 - 0.998
a 0.8714 0.8231 0.2522287
mRax
Position (y/H) 0.928 - 0.942867
. 0.2637 0.2646 0.549264
Position (x/H) 0.012 - 0.047876

Accuracy Enhancement

Table (3) presents the results obtained for Ra=10°. The central, hybrid and power
law differencing schemes were used to discretize the convection-diffusion (advection
scheme) terms in this case. Comparisons have been made only with the results of De Vahl
Davis. From the table, it is clear that the power law scheme is superior to the hybrid
scheme in terms of accuracy. Table (3) gives a comparison between the central, hybrid
and power law schemes for the finest grid 80x 80 grid 6400 elements in comparison with
the benchmark of De Vahl Davis.
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Table 3 : Accuracy of the solution for air at Ra = 10°.

_ V, )
Scheme Grid -4 MAX MAX
NuRa JopaTH ATy
20x20 0.254740618 0.248474 0.141778
30x30 0.254009574 0.248042 0.140321
Central
60x60 0.254065808 0.256777 0.136273
80x80 0.254459447 0.256918 0.134901
20x20 0.250185653 0.247673 0.141708
Hvbrid 30x30 0.252941126 0.249123 0.140452
ri
y 60x60 0.254122043 0.2565536 0.136281
80x80 0.254346979 0.2556864 0.13488
20x20 0.251422804 0.245821 0.142641
30x30 0.252435019 0.248378 0.115417
Power law
60x60 0.253559701 0.256557 0.136757
80x80 0.254122043 0.256848 0.135197
De Vahl Davis - 0.254122044 0.261 0.153

The maximum error between the benchmark and present solution occurs for the
average Nusselt number, and it is as much as 0.13% for the central scheme. All errors are
below 0.13% compared to the benchmark of De Vahl Davis (1984). The power law
scheme takes smaller time to obtain the results than the central and hybrid schemes. Thus,
the power law scheme is default scheme in the CFD code.

Isotherms and Streamlines

The effect of Rayleigh number (Ra=10% -108) on isotherms and streamlines are
shown in Figure (2) and Figure (3). It is seen that the streamline contours exhibit
circulation patterns. One single cell circulation inside the square cavity at Ra =10° is
created, and the cell becomes a circulation of an oval shape at Ra =10*. At Ra =10° three
circulation cells are created because of the temperature difference between the walls. One
circulation cell covers most of the cavity apart from the top left corner and the bottom
right corner regions, in which the fluid is almost stagnant. Within this primary circulation
cell, there are two smaller counter rotating circulation cells near the center of the cavity.
At Ra =108, the two cell circulation move towards the walls, giving space for a third
vortex to develop.
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Ra=10" Ra=10°

Figure 2: Contour plots of stream-function ¥ for Ra = 103- 108
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This third vortex is very weak in comparison with the other two and, the rotation is
again clockwise owing to a very small positive temperature gradient at the center of the
cavity. The figures also show that the solution is centro-symmetric. At Ra =107, the
central part of the cavity still has three clockwise cells and two saddle points. However,
the upper left and lower right comers of the cavity have developed strong rotating cells
or vortices. Similar flow patterns were observed by Henkes (1990) [5].

The shapes of the isotherms, Figure (3), show how the dominant heat transfer
mechanism changes as Ra increases. For low Ra-values almost vertical isotherms appear,
because heat is transferred by conduction between hot and cold walls. As the isotherms,
depart from the vertical position, the heat transfer mechanism changes from conduction
to convection. It can be seen that the isotherms at the mid-point between the hot and cold
walls of the cavity are horizontal and become vertical only inside the very thin boundary
layers.

The temperature contours, 6, reveal that within the top left corner and the bottom
right corner heat is transferred almost in conduction mode only, because of almost
stagnant fluid and weak convection in those regions. The temperature contours show that
the temperature in the core of the square cavity remains almost constant and equal to the
average temperature of the hot and the cold walls. The temperature distribution near the
top and the bottom walls is slightly modified.

The velocity distribution

It is evident from Figure (4) and Figure (5) that both U and V components are zero
at the walls due to no-slip condition, and that they are zero at the center of the cavity,
because of the nearly stagnant condition in the center of the vortex formed at the center
of the cavity. The U and V distributions are shown to be symmetric relative to the center
of the cavity. Since the left wall is heated and the right one is cooled, the fluid is moving
upward at the left wall (Positive V at x/L. 0) and is moving downward at the right wall
(negative V at x/L. 1). These directions force the U component to be positive near the
upper wall and to be negative near the lower wall, which initiate the clockwise rotation
of the fluid inside the cavity. Another noticeable point is that the maximum value of the
non-dimensional V is greater than that of the non-dimensional U value due to the effect
of buoyant forces at the vertical walls.

The Variation of Nusselt Number

Results of the local Nusselt numbers Nu, Figure (6), show the effect of Ra on the
variation of the local Nusselt number with the coordinate Y. The figure shows that the
peaks of Nusselt numbers are located at the bottom of the hot wall and the top of the cold
wall. The high velocity fluid at the bottom of the cold wall impinges to the bottom of the
hot wall and causes this increase of the Nusselt number. Then the Nusselt number remains
nearly constant in the middle between the hot and cold walls, before decreasing because
of the separation of the fluid at the top of the hot wall and at the bottom of the cold wall.
The maximum value of Nu increases with increasing Rayleigh number to enhance the effect
of convection mode of heat transfer.
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Figure 3: Contour plots of temperature 0 for Ra = 10° - 108
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Figure 4: Non-dimensional vertical velocity component in the horizontal mid-plane
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Correlation between the averages

Nusselt number and Rayleigh number

The results of the present calculation were fitted to the equation Nu = aRa’® and
the values of a and b are compared with similar results by Markatos and Pericleous,
Barakos y col and Henkes et al in Table (4). It is shown that there is good agreement
between the results of this paper and the previous results.
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Table 4: Comparison of values a and b for correlation Nu=a Ra®.

a b Range
Present work 0.145 0.303 10° < Ra < 10°
Barakos y col. 0.142 0.299 10% < Ra < 10°
(1994)
Markatos & 0.143 0.299 10° < Ra < 10°
Pericleou
Henkes et Al 0.304 0.25
Present work 0.175 0.283 10% < Ra < 108

The relation between the average Nusselt number and the Rayleigh number using
the results of this paper is found to be:

Nu =0.145Ra%%%
CONCLUSIONS

Overall conclusion

From the results of this research, it can be concluded that:

. A good agreement was found between the results of this present model and the
Benchmark results of [3].

. A grid size of 80x80 produced an acceptable accuracy when compared with the
benchmark results of [3].

. Power law scheme ran faster than both the upwind and central scheme.

. The average Nusselt number at the hot left side wall increased with increasing
Rayleigh number.

. The local Nusselt number at the hot left side wall had a maximum value at the
bottom.

= The results obtained for all parameters have an error of less than 1% compared with
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benchmark numerical results of [3].

Scope for Further Study:

Since the Fortran code takes a long time ( for high resolution and in turbulent regime
simulation - next stage of the study) , we need more efficient methods to save and
optimize computing resources (RAM and CPU time). The following aspects need to be
investigated:

= Improving the Solver (use of e.g. Conjugated Gradient Method , Multigrid
method, strongly implicit procedure, etc... ).

= Improved SIMPLE-type procedures e.g.: SIMPLER, SIMPLEC, SIMPLEX,
PISO, etc.,,)

=  Using of unstructured grid approach and code development for complicated
geometries.

= The use of higher Order Differencing Schemes(QUICK Scheme, TVD.....etc.).
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NOMENCLATURE
a Coefficient of Discretization Equation (ap,aw,ag,ag,ay )
cp specific heat at constant pressure (J kg™ K™)
D concentration diffusion coefficient (m* s™)
Gr Grashof number
g gravitational acceleration (m s7)
H Cavity height
k thermal conductivity (W m™ K)
Nu Nusselt number
Nu Average Nusselt number
P pressure (Pa)
P dimensionless pressure

Ra Rayleigh number

S Source
T temperature (K°)
u, v velocity components (m s™)

U,V  dimensionless velocity components
Xy X-, y-coordinates (m)
XY dimensionless coordinates
Greek symbols
thermal diffusivity (m”s™)
u dynamic viscosity (kg m"' s7)
v kinematic viscosity (m”s™)
density (kg m™)

thermal expansion coefficient (K™)

P
B

/] dimensionless temperature

yw  dimensionless stream function
o

general scalar dependent variable

]

diffusion coeffecient

A
Subscripts
H  high
L low
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