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 الملخص
جر�ت دراسة عدد�ة ثنائ�ة الأ�عاد لانتقال الحرارة �الحمل الحر للهواء في تجو�ف مر�ع مغلق. أ

یتعرض الجدار العمودي الأ�سر إلى تسخین بینما تم تثبیت درجة حرارة الجدار العمودي في الجهة 
سة الحل اال�منى عند درجة حرارة منخفضة. وقد اعتبرت الأسطح العل�ا والسفلى معزولة. تضمنت الدر 

 ستوك ومعادلة الطاقة �استخدام طر�قة الحجم المحدد. استخدمت خوارزم�ة-العددي لمعادلات نافیر
)SIMPLE( بلغة والطاقة، وكم�ة الحركة الكتلة لحل معادلات (FORTRAN 90) السرعة لحساب 

 .الحسابي للمجال الحرارة ودرجات الانس�اب ودالة
 أن وجد. 810 الى 310 من رایلى عدد یتغیر بینما ،0.71 و�ساوي  ثابت براندل عدد أن اعت�ار تم

 مع الحمل الى �التحول یبدأ الحرارة انتقال نأو  310 عند رایلي لق�م فقط �التوصیل �كون  الحرارة انتقال
 لیهاع المتحصل النتائج مقارنة تم العددي، الحل مصداق�ة من التحقق جلأ ومن. رایلي عدد ازد�اد

 طول على ىالمحل نسلیت لعدد والدن�ا القصوى  والق�م المتوسط نسلیت عدد من لكل سا�قة �حوث مع
. ةالمذكور  رایلى عدد أرقام لجم�ع حدوثها ومكان سرعة وأدنى سرعة أقصى وكذلك الساخن الجدار
 ىالأقص المحلى نسلیت لعدد النتائج وكانت. سا�قة منشورات مع جیدا توافقا العدد�ة النتائج بینت
 وخطوط الجر�ان خطوط نتائج قورنت كما. التوالي على % 0.7 و %0.22 ضمن المتوسط نسلیت وعدد

 .جیداً  توافقا وأظهرت الحرارة درجات
 

ABSTRACT 
Two-dimensional natural convection heat transfer in a differentially heated square 

cavity was examined numerically. The left sidewall of the cavity was heated, while the 
right side was kept at constant lower temperature. The top and bottom walls were 
adiabatic. The theoretical study involved the numerical solution of the Navier-Stokes and 
energy equations by using finite volume method. A computational code based on the 
SIMPLE algorithm was used for the solution of the system of mass, momentum, and 
energy transfer governing equations. The prepared numerical solution was capable of 
calculating the velocity, stream function and the temperature fields of the computational 
domain. A computer program in (FORTRAN 90) was used to carry out the numerical 
solution. 

The problem has been analyzed and made dimensionless. The non-dimensional 
governing equations were solved using finite volume method. The enclosure was assumed 
to be filled with air of a Prandtl number of 0.71. The problem was examined for different 
values of Rayleigh numbers in the range from 103 to 108. It was found that the heat transfer 
was dominated by conduction for small Ra of 103, and began to be dominated by 
convection with increasing Ra. In order to validate the numerical model; average Nusselt 
number, local Nusselt number along the hot wall, its maximum and minimum values and 
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the locations where they occur, the maximum and minimum velocity values and their 
corresponding locations for all values of Ra are compared with previous works. The 
model results were found to be in an excellent agreement with previous literature results 
which validate the present computational model. The model predictions of the maximum 
local Nusselt number and the average Nusselt number were within 0.22% and 0.7% 
respectively. The results of streamlines and isotherms are compared with data found in 
litrature  and an acceptable agreement was found. 

 

KEYWORDS: Natural Convection; Finite Volume Method; Nusselt Number; Square 
Enclosure; Rayleigh Number; differentially heated cavity. 

 
INTRODUCTION 

Buoyancy-driven convection in a square cavity with differentially heated 
isothermal walls is a prototype of many industrial applications such as thermal insulation, 
cooling of electronic devices, solar energy instruments, nuclear reactors, heat-recovery 
systems, room ventilation, etc. Buoyancy driven flows are complex because of essential 
coupling between the transport properties of flow and thermal fields. 

This research presents a computational method of study to obtain the solutions of 
the buoyancy-driven laminar flow heat transfer in a two-dimensional natural convection 
of an air-filled cavity. There are numerous commercial CFD codes available on the 
market. They are user-friendly robust and convenient. It’s easy to perform a CFD 
simulation by using a commercial CFD code. However, the solver is often operated as a 
“black box”; the encapsulation of the commercial codes makes them blind to the users. 
User has no access to the detailed codes and cannot debug the program, which limits its 
function in the teaching and research activities because researchers always need full 
control of the codes and want to keep track of the change of every variable. 
 
RESEARCH OBJECTIVE 

Analysis of heat transfer within the fluid flow is important since it has many 
applications in industries such as energy conservation process, energy storage, 
meteorology and climatology. Numerical simulation plays an important role in these areas 
because experiments are often costly. The objectives of this research are meant to:  

i. Study the phenomena of natural convection inside a two-dimensional enclosure, 
which is differentially heated and cooled from the vertical walls. 

ii. Develop Mathematical formulation of the physical problem along with the 
boundary conditions for a laminar flow in a differentially heated cavity. 

iii. Develop a program based on a finite volume method (FVM) and to validate the 
applied numerical method for the classical two-dimensional square cavity. 

iv. Investigate and determine the influence of Rayleigh number, Ra, on the velocity 
and temperature fields inside a two-dimensional square cavity. 

 
LITERATURES SURVEY 

Natural convection in rectangular enclosure has been studied for many years. 
Batchelor (1954) [1] formulated the problem of natural convection in a rectangular cavity 
where heat transfer characteristics at different Rayleigh numbers were analyzed. Wilkes 
and Churchill (1966) [2] developed finite difference scheme to study natural convection 
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in a long horizontal enclosure of rectangular cross section with differentially heated 
vertical walls. They obtained transient and steady state isotherms and streamlines for wide 
range of Grashof numbers and different aspect ratios. 

De Vahl Davis (1983) [3] presented benchmark numerical solution of natural 
convection of a square cavity. The study is performed for air with Prandtl number 0.71 
and for Rayleigh number changing from 103 to 106. The governing equations of motion 
and heat transfer are solved on several mesh sizes by finite difference method. They 
tabulated values of average Nusselt number on the vertical boundaries of the cavity. The 
maximum horizontal and vertical velocities and the maximum absolute value of the 
stream function at four different Rayleigh numbers for various grid sizes are used by 
many researchers to check the accuracy of the solution obtained. 

Henkes et al (1990) [4,5] carried out two-dimensional calculations in a square 
cavity which was heated from the vertical walls. The governing equations are solved 
using several mesh sizes by finite volume method. They used three different discretization 
schemes; the second-order central differencing, hybrid scheme and first-order upwind 
scheme. The central difference scheme was found to give the most accurate solutions. 
The computations covered both laminar and turbulent flows with Rayleigh numbers, 
ranging up to 1014 for air and 1015 for water. The last streamline pattern of Ra > 5 x 106 
contained four asymptotic structures, a vertical boundary layer along the heated wall, a 
core region, a corner region and a horizontal layer. For increasing Ra, the core became 
thermally stratified and had horizontal streamlines. For Ra → ∞, the Navier-Stokes 
solution along the vertical wall converged to the boundary layer solution.  

Le Quéré (1990) [6] has revisited the benchmark results, and he also added 
benchmark results for two new cases: air at Ra = 107 and air at Ra = 108. Le Quere 
employing pseudo-spectral Chebyshev collocation method in order to solve the Navier-
Stokes and energy transport equations written in primitive variables under the Boussinesq 
approximation. A very important findings are the detachment region at the horizontal 
adiabatic walls and the large zone of linear thermal stratification of the core. For 
increasingly higher Rayleigh numbers the flow eventually turns to be unsteady. The onset 
of the first transition to periodicity and the physical description of the instability 
mechanism are still in question. 

Many researchers, [7, 8, 10, 11] had contributed to the subject, by either proposing 
a method of solution or by proposing the mathematical numerical model and the suitable 
grid size generation.  

In this study, the effect of Rayleigh number on the flow patterns and the resulting 
heat transfer is determined. The numerical technique based on the finite volume method 
(FVM) is applied and a n o n - uniform grid size is generated. The results at different 
Nusselt numbers, which represent the rate of heat being transferred, are presented in 
tables. Stream function and isotherms contours, which demonstrate the fluid flow and 
thermal distributions inside the cavity, are also given. 
 
MATHEMATICAL MODEL 

The mathematical model for the problem under study consists of a set of governing 
equations equipped with the boundary conditions so that the number of equations are the same 
as the number of unknowns. Figure (1) shows a vertical section in the square cavity, L= H, with 
the boundary conditions shown on the vertical right and left walls, while the horizontal walls , 
top and bottom, are considered adiabatic.  
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Figure 1: Schematic diagram of the cavity 

In building the mathematical model, assumptions of two-dimensional problem 
without viscous dissipation and with constant properties are made. Gravity effects act in 
the vertical direction only. Radiation heat exchange was assumed negligible. The 
governing equations are: 

Continuity equation: 
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Energy equation: 
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Where the subscript i indicates the tow coordinates x and y, and ui is u when xi is x and v 
when xi is y. 

The governing equations are transformed into non- dimension forms using the 
following non- dimensional variables: 
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The resulting governing equations are: 

Equation of continuity 
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y-Momentum equation  
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Thermal energy equation 
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Boundary Conditions 
 The boundary conditions of velocity and temperature fields are shown in 
Figure (1) and are given below: 

                                                U          V          θ 
              S1      West Wall        0           0          θmax             at all Y's,    X=0 

S2      Top Wall          0           0        0=
∂
∂
Y
θ

         at all X's,    Y= 1.         (9)      

              S3      East Wall          0           0          θmin              at all Y's ,    X=1. 

              S4      Bottom Wall     0           0         0=
∂
∂
Y
θ

        at all X's,     Y=0 

The equations (5 to 9) represent the complete mathematical model to be numerically 
solved. The rate of heat transfer is expressed in terms of local Nusselt number, Nu, 
at the heated surface as follows: 

0=∂
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−=
XX
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The average Nusselt number, Nu , is defined by: 
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Noting that at y=0, Y=0 and at y=H, Y=1 
 
Grid distribution 

At low Rayleigh numbers, non-uniform grid spacing is not essential. At higher 
Rayleigh numbers, one encounters steep velocity and temperature gradients. Fine grid 
spacing is required close to the wall to resolve these gradients. The use of non-uniform 
grid spacing allows an economical distribution of grids in the calculation domain. For 
laminar calculations, a sine function distribution for the x and y directions is used. 
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Notice that  imin=Jmin=2,            imax= NI-2,                Jmax=NJ-2 

RESULTS AND DISCUSSIONS: 
Grid Sensitivity Check 
 Test for the accuracy of the grid sensitivity is examined for the arrangements of five 
different non-uniform grid systems with the following number of elements: 1600, 2500, 
3600, 4900 and 6400. The results are shown in Table (1). From these comparisons, it is 
suggested that 6400 non-uniform elements are sufficient to produce accurate results. 
 
Table 1: Comparison of the Results for Various grid dimensions at Ra = 105 and Pr = 0.71. 
 

Elements Nusselt Number, Nu 
1600 4.502 
2500 4.509 
3600 4.509 
4900 4.510 
6400 4..519 

Code Validation 
In Table (2), a comparison is given between the present laminar solution and 

numerical results found in the literature. The mean Nu along the hot wall, the maximum 
and minimum values  of Nu, the maximum and minimum velocities and their locations 
are all compared. The present results are fount to have an excellent agreement with the 
benchmark solution of De Vahl Davis [3] for all values of Ra, and they are within 2% 
with results of Markatos and Fusegi et al.  
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Table 2: Comparison of 2d DHC flow results with the benchmark data of [dVD, Barakos, 
Fusegi , A.D’Orazio ,Le 91, Puragliesi] for Ra = 103, 104, 105, 106, 107, 108. 
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Accuracy Enhancement 

Table (3) presents the results obtained for Ra=105. The central, hybrid and power 
law differencing schemes were used to discretize the convection-diffusion (advection 
scheme) terms in this case. Comparisons have been made only with the results of De Vahl 
Davis. From the table, it is clear that the power law scheme is superior to the hybrid 
scheme in terms of accuracy. Table (3) gives a comparison between the central, hybrid 
and power law schemes for the finest grid 80x 80 grid 6400 elements in comparison with 
the benchmark of De Vahl Davis. 
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Table 3 : Accuracy of the solution for air at Ra = 105. 
 

  1/4RaNu − Grid Scheme 

0.141778 

0.140321 

0.136273 

0.134901 

0.248474 

0.248042 

0.256777 

0.256918 

0.254740618 

0.254009574 

0.254065808 

0.254459447 

20×20 

30×30 

60×60 

80×80 

Central 

0.141708 

0.140452 

0.136281 

0.13488 

0.247673 

0.249123 

0.2565536 

0.2556864 

0.250185653 

0.252941126 

0.254122043 

0.254346979 

20×20 

30×30 

60×60 

80×80 

Hybrid 

0.142641 

0.115417 

0.136757 

0.135197 

0.245821 

0.248378 

0.256557 

0.256848 

0.251422804 

0.252435019 

0.253559701 

0.254122043 

20×20 

30×30 

60×60 

80×80 

Power law 

0.153 0.261 0.254122044 - De Vahl Davis 

 
The maximum error between the benchmark and present solution occurs for the 

average Nusselt number, and it is as much as 0.13% for the central scheme. All errors are 
below 0.13% compared to the benchmark of De Vahl Davis (1984). The power law 
scheme takes smaller time to obtain the results than the central and hybrid schemes. Thus, 
the power law scheme is default scheme in the CFD code. 
 
Isotherms and Streamlines 

The effect of Rayleigh number (Ra=103 -108) on isotherms and streamlines are 
shown in Figure (2) and Figure (3). It is seen that the streamline contours exhibit 
circulation patterns. One single cell circulation inside the square cavity at Ra =103 is 
created, and the cell becomes a circulation of an oval shape at Ra =104. At Ra =105 three 
circulation cells are created because of the temperature difference between the walls. One 
circulation cell covers most of the cavity apart from the top left corner and the bottom 
right corner regions, in which the fluid is almost stagnant. Within this primary circulation 
cell, there are two smaller counter rotating circulation cells near the center of the cavity. 
At Ra =106, the two cell circulation move towards the walls, giving space for a third 
vortex to develop.  

3
MAXU

g Tβ ν∆
MAXV

g THβ∆
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Ra=103 Ra=104 

  

Ra=105 Ra=106 

  
Ra=107 Ra=108 

Figure 2: Contour plots of stream-function   Ψ for Ra = 103- 108. 
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This third vortex is very weak in comparison with the other two and, the rotation is 
again clockwise owing to a very small positive temperature gradient at the center of the 
cavity. The figures also show that the solution is centro-symmetric. At Ra =107, the 
central part of the cavity still has three clockwise cells and two saddle points. However, 
the upper left and lower right comers of the cavity have developed strong rotating cells 
or vortices. Similar flow patterns were observed by Henkes (1990) [5]. 

The shapes of the isotherms, Figure (3), show how the dominant heat transfer 
mechanism changes as Ra increases. For low Ra-values almost vertical isotherms appear, 
because heat is transferred by conduction between hot and cold walls. As the isotherms, 
depart from the vertical position, the heat transfer mechanism changes from conduction 
to convection. It can be seen that the isotherms at the mid-point between the hot and cold 
walls of the cavity are horizontal and become vertical only inside the very thin boundary 
layers. 

The temperature contours, θ, reveal that within the top left corner and the bottom 
right corner heat is transferred almost in conduction mode only, because of almost 
stagnant fluid and weak convection in those regions. The temperature contours show that 
the temperature in the core of the square cavity remains almost constant and equal to the 
average temperature of the hot and the cold walls. The temperature distribution near the 
top and the bottom walls is slightly modified. 

 
The velocity distribution 

It is evident from Figure (4) and Figure (5) that both U and V components are zero 
at the walls due to no-slip condition, and that they are zero at the center of the cavity, 
because of the nearly stagnant condition in the center of the vortex formed at the center 
of the cavity. The U and V distributions are shown to be symmetric relative to the center 
of the cavity. Since the left wall is heated and the right one is cooled, the fluid is moving 
upward at the left wall (Positive V at x/L. 0) and is moving downward at the right wall 
(negative V at x/L. 1). These directions force the U component to be positive near the 
upper wall and to be negative near the lower wall, which initiate the clockwise rotation 
of the fluid inside the cavity. Another noticeable point is that the maximum value of the 
non-dimensional V is greater than that of the non-dimensional U value due to the effect 
of buoyant forces at the vertical walls.  
 
The Variation of Nusselt Number  

Results of the local Nusselt numbers Nu, Figure (6), show the effect of Ra on the 
variation of the local Nusselt number with the coordinate Y. The figure shows that the 
peaks of Nusselt numbers are located at the bottom of the hot wall and the top of the cold 
wall. The high velocity fluid at the bottom of the cold wall impinges to the bottom of the 
hot wall and causes this increase of the Nusselt number. Then the Nusselt number remains 
nearly constant in the middle between the hot and cold walls, before decreasing because 
of the separation of the fluid at the top of the hot wall and at the bottom of the cold wall. 
The maximum value of Nu increases with increasing Rayleigh number to enhance the effect 
of convection mode of heat transfer. 
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Ra=103 Ra=104 

  
Ra=105 Ra=106 

  
Ra=107 Ra=108 

Figure 3: Contour plots of temperature θ for Ra = 103 - 108 
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Figure 4: Non-dimensional vertical velocity component in the horizontal mid-plane 

 
Figure 5: Non-dimensional horizontal velocity component in the vertical mid-plane 

 
Correlation between the averages  
 
Nusselt number and Rayleigh number 

The results of the present calculation were fitted to the equation  and 
the values of a and b are compared with similar results by Markatos and Pericleous, 
Barakos y col and Henkes et a1 in Table (4). It is shown that there is good agreement 
between the results of this paper and the previous results. 

baRa= Nu
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Figure 6: local Nusselt number with different Rayleigh numbers at hot wall 

 

Table 4: Comparison of values a and b for correlation Nu=a Rab. 

 a b Range 
Present work 0.145 0.303 103 < Ra < 106 

Barakos y col. 
(1994) 

0.142 0.299 103 < Ra < 106 

Markatos & 
Pericleou 

0.143 0.299 103 < Ra < 106 

Henkes et Al 0.304 0.25  

Present work 0.175 0.283 106 < Ra < 108 

 
The relation between the average Nusselt number and the Rayleigh number using 

the results of this paper is found to be: 

 
CONCLUSIONS 
 
Overall conclusion 
From the results of this research, it can be concluded that:  
 A good agreement was found between the results of this present model and the 

Benchmark results of [3]. 
 A grid size of 8080 × produced an acceptable accuracy when compared with the 

benchmark results of [3]. 
 Power law scheme ran faster than both the upwind and central scheme.  
 The average Nusselt number at the hot left side wall increased with increasing 

Rayleigh number. 
 The local Nusselt number at the hot left side wall had a maximum value at the 

bottom. 
 The results obtained for all parameters have an error of less than 1% compared with 

0.303Nu =0.145Ra
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benchmark numerical results of [3]. 
 

 
Scope for Further Study: 

Since the Fortran code takes a long time ( for high resolution and in turbulent regime 
simulation - next stage of the study) , we need more efficient methods to save and 
optimize computing resources (RAM and CPU time). The following aspects need to be 
investigated: 
 Improving the Solver (use of e.g. Conjugated Gradient Method , Multigrid 

method, strongly implicit procedure, etc… ). 
 Improved SIMPLE-type procedures e.g.:  SIMPLER, SIMPLEC, SIMPLEX, 

PISO, etc.,,) 
 Using of unstructured grid approach and code development for complicated 

geometries.  
 The use of higher Order Differencing Schemes(QUICK Scheme, TVD…..etc.). 
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NOMENCLATURE 

 
Greek symbols 

 
Subscripts  

H      high 
L       low 
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