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ABSTRACT

Many owners of Pre-stressed Concrete Cylinder Pipe (PCCP) around the world
experience regular failures in their pipelines. The condition and performance of any water
pipeline can be assessed by direct inspection using techniques such as electromagnetic
resonance, acoustic monitoring, or GPR radar. It is common practice to inspect only a
few sections of a pipeline at any point in time. This is largely due to the very high costs
associated with direct inspection and the inability to apply direct inspection techniques
under the operating conditions that prevail inside the pipeline. Thus, direct inspection
activities can only provide a very incomplete picture of the state of the water mains. The
situation can be improved with the use of intelligent models capable of predicting the
current condition and performance of the pipeline system based on observations of
historical conditions and inspection of the results. We have developed such models for
PCCP wire break predictions using Artificial Neural Network (ANN) techniques. The
models are applied to real-world acoustic monitoring data collected from the Man Made
River Project (MRP) in Libya. The ANN models are in good agreement with the training
patterns and show good prediction performance. The developed models are now routinely
used for the prediction of PCCP wire breaks by MRP.
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INTRODUCTION

Many water authorities and agencies around the world use Pre-stressed Concrete
Cylinder Pipes (PCCPs) as transmission and distribution systems. As these systems
degrade over time, the evaluation of their structural integrity and performance becomes a
major concern for owners and operators. Corrosion-induced failure in the pre-stressing
wires of PCCP can result in ruptures with consequent interruption in service, damage to
property and repair costs. Such ruptures tend to occur suddenly without prior anticipation
by the operator.

According to Makar and Kleiner [1], there are two possible approaches to assess
the condition of water pipelines. The first approach, indirect indicators and statistical
methods, involves the collection of data related to pipe damage. This data could be used
to develop statistical indicators or intelligent models to assess the condition of the pipes.
The second approach, direct inspection and monitoring techniques, involves the
inspection of the pipeline using non-destructive evaluating techniques (such as remote
field eddy current/transformer coupling, acoustic monitoring or GPR radar), which detect
problems (defects) in the pipes. In general, the second approach is severely hampered by
limited access to the buried pipes and the high cost associated with conducting non-
destructive inspections, which prevents the constant monitoring of the pipes. The first
approach would require model development.

Artificial Neural Networks (ANNSs) present a promising direction for the
development of predictive models to assess the pipe condition because of their learning
ability and the property of generalization. A number of successful developments of ANNs
for condition assessment of different types of buried pipes have been presented lately.
Systems with PCCPs have not been addressed to date.

Najafi and Kulandaivel [2] presented an ANN model for predicting the sewer pipes
condition based on historical data. A back-propagation neural network algorithm was
used for training and testing. Seven input variables were used for the neural network
modeling, namely length of pipe segments, diameter of pipe segments, type of pipe
material, age of pipe, depth of cover, slope of pipe segments and type of sewer. Al-
Bargawi and Zayed [3] applied the ANN approach to develop a model for assessment and
prediction of water mains condition rating. Their research covered three types of pipes,
namely asbestos, cast iron and ductile iron pipes. The input variables included pipe type,
size, age, breakage rate, Hazen-Williams factor, excavation depth, soil type and top road
surface. More recently, a neural network model for prediction of water cast iron pipeline
failure has been reported by Achim, Ghotb and McManus [4]. The developed model
included six input variables: pipe diameter, year of construction, pipe age, length and the
pair of geographical coordinates. The model was developed to predict the number of
failures that would occur in a pipeline per kilometer and year.

Geem et al [5] present a water pipe condition assessment model to predict the
overall pipe condition index using ANNs. The model has been applied to real-world
system in South Korea. A back-propagation neural network algorithm has been used for
training and testing. The model incorporates eleven inputs: pipe material, pipe diameter,
pressure head, inner coating, outer coating, and electric recharge, bedding condition, pipe
age, trench depth, soil condition and number of road lanes.
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This paper presents the first development of ANN models for the prediction of
PCCP conditions. The models are implemented on the basis of a large real-world system
in Libya, the Man-Made River Project (MRP). The Man-Made River Authority (MRA),
the authority dedicated for the implementation and operation of the MRP, experienced a
series of five pipe ruptures between August 1999 and April 2001. The reason of these
ruptures was the corrosion-induced failure of the pre-stressing wires of PCCP. At the
beginning of the problem, MRA developed a simplified pipe classification model known
as Pipe Criticality Index (PCI). This index assisted in ranking the distressed pipes
according to their criticality, which helped in prioritizing inspection and monitoring as
well as the establishment of repair and replacement plans for affected sections of
pipelines. At the same time, MRA recognized the need for a long-term management tool
that would facilitate more comprehensive repairing and maintenance decisions.
Moreover, enable taking the appropriate preventive measures through continuous
monitoring and estimation of the remaining service life of each pipe. Thus incorporating
structural, chemical and statistical models based on pipe databases as well as all data
collected from non-destructive inspections. The ANN models presented in this work have
been developed to address these needs. They provide managers and operators of PCCP
water mains with a means to determine cause and time deterioration of their PCCP is
occurring so as to enable to better decision-making about monitoring, inspection and
rehabilitation of the pipeline networks.

APPLICATION BACKGROUND

The MRP is a major water supply project in the State of Libya. It was constructed
to extract and convey high quality ground water from deep aquifers in the Sahara Desert
to the northern coastal strip where over 90% of the population lives. To date, three phases
(1, Il and 111) of the project have been completed and are under operation. These consist
of 463,440 (3,847 km) PCC pipes of mainly 4.0 meter diameter that transport four million
cubic meters of water per day from 674 production wells at Sarir, Tazerbo, East Jabal
Hasouna and North East Jabal Hasouna to end reservoirs at coastal strip. The layout of
these phases as well as the future phases is shown in Figure (1) [6, 7].
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Figure 1: Layout of MRP phases (MRA, 2009)
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MRA experienced a series of five ruptures in 4.0 m diameter pipes of the Phase I
system. The first pipe ruptured was on 19 August 1999 while the second rupture was on
04 September 1999. Three more ruptures occurred between January 2000 and April 2001.
Locations of these ruptures on the pipelines are shown in Figure (2).

On-site investigations and studies carried out by MRA concluded that the ruptures
were caused by the corrosion-induced failure of the pre-stressing wires. All these ruptures
resulted in an emergency (unplanned) shutdown, which is not acceptable to MRA as the
project supplies water to the most of urban communities along the MRP pipeline route.

Sarir-Sirt (35) line

5 arir Well-fisld

Tazatho Well-fisld

Figure 2: Locations of pipe ruptures on Phase | pipelines

To minimize the risk of occurrence of more rupture events and maintain the
uninterrupted flow of water, MRA adopted a full-scale rehabilitation program aimed at
identifying and treating all affected pipes. This plan involved conducting an assessment
program for pipeline condition based on Non-Destructive Testing (NDT), and installing
a Cathodic Protection (CP) system on the entire Phase | system. A simplified pipe
classification model was established and used to classify the distressed pipes according
to their criticality. The rehabilitation program has enabled MRA to conduct a successful
selective and preventive maintenance to extend the service life of its enormous and
complex pipeline network. Since April 2000, the date of using NDT techniques in MRP,
MRA has inspected a total of approximately 1655 km of Phase I pipes using both Remote
Field Eddy Current/Transformer Coupling (RFEC/TC) and P-Wave. Some sections of
pipelines have been inspected three times over a period of 6-years. In total, 6960 pipes
were found to be distressed. All those distressed pipes were uncoated (white) pipes. Phase
| pipelines consist of 60% (1176 km) uncoated pipes and 40% (750 km) coated (black)
pipes. Also, MRA had installed an acoustic monitoring system to monitor sections of their
pipelines. It has monitored 173 sites spanning 316.3 kilometers of white pipe sections.
Some of these sites have been monitored twice. A very large amount of data has been
collected showing wire breaks as they occur in real-time. This wealth of data can be
exploited with the use of ANNS in order to predict future PCCP failures.
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DATA COLLECTION AND SELECTION OF ANN MODEL INPUTS

Results of acoustic monitoring such as number, location, date, time and type of the
pre-stressing wire breaks are recorded, as they occurred, and saved into the acoustic
monitoring database. A total of 9035 records of data containing pipe ID, number of
recorded wire breaks, and time between first and last wire break were prepared and linked
with both Pipe As-Built and Pipe History databases in order to extract the most important
design, physical and environmental available data that have the major effect on the
deterioration process of PCCP.

Table 1: Input variables included in the ANN model

- Type of Name of . o Range of
No. variable variable Description of variable variable
) Monitoring | The monitoring time between first and last | 30 to 900
§ period wire break for a pipe days
5' The time period between pipe installation 4349 to
2 = Pipeage | (laying) and the occurrence of first wire 6640
break days
- continuous
z Soil o values
= .
3 5 resistivity Average soil resistivity on 4m depth (in ohm-cm)
Pressure 6, 8,10, 12,
4 Pipe design pressure 14 and 16
rate
(bars)
1900, 2050
5 Soil density | Pipe design soil density and 2100
(kg/cm®)
) ) . . - 28.3.0.40
6 o Soil cover | Design height of soil cover on the pipe and 5.0 (m)
= . Type of pre-stressing wire wrap: single or | 1=Single or
! WIre Wiap | gouble 2=Double
Wire 488.6.35
: ; ’ i i 2
8 liameter Diameter of pre-stressing wire and 7.25
(mm)
. Distance between two adjacent pre- 982to
? Wire pétch stressing wires in the same wrap 22.33 (mm)

Nine variables (factors) were identified and selected as inputs to the proposed ANN
model. Description of these variables is presented in Table (1), and an illustration of the
designed ANN structure with input and output variables is shown in Figure (3).

Previous MRA studies concluded that the rate of wire breaks recorded by acoustic
monitoring pre and post installation of CP system for both Standard and Special pipe type
is different. This was investigated through the on-site inspections and excavations
conducted on the pipelines [8]. Based on that, the collected set of data has been divided
into four groups in order to increase the performance of the neural networks and achieve
high accuracy of predicted outputs.
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e  Group 1: SP-Before CP contains Special Pipes (SP) that recorded wire breaks
prior to the installation of the CP system.

e  Group 2: SP-After CP contains Special Pipes (SP) that recorded wire breaks after
the installation of the CP system.

e  Group 3: ST-Before CP contains Standard Pipes (ST) that recorded wire breaks
prior to the installation of the CP system.

e  Group 4: ST-AfterCP contains Standard Pipes (ST) that recorded wire breaks
after the installation of the CP system.
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Soil Cover
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Figure 3: Wire breaks prediction ANN model

TRAINING OF ANN MODEL

Once the ANN has been designed, it has to be trained in order to produce the
expected output values. This training operation is accomplished by selecting a proper
training algorithm for the problem to be solved. Several training algorithms have been
developed for ANNs. Among various existing training algorithms, Back-Propagation
algorithm was selected in this research work. It is commonly used algorithm, and has
been proven to be successful in practical applications, despite its disadvantages of being
time-consuming and complex. [9-11].

To successfully apply ANN in prediction of PCCP wire breaks many input variables
have to be converted into a suitable format for presentation to the neural networks. The
data representations of the neural network inputs are categorized into two groups. The
first group has a continuous-valued data type and will be properly scaled, and the second
group has an enumerated data type and will be properly encoded and decoded.

The dataset of 9035 patterns (each pattern formed by input and output vectors) has
been randomly split into 90% of the data for training and 10% of the data for testing.
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Number of patterns allocated to the training and testing for each group are shown in Table

().

Table 2: Allocation of training and testing data patterns

Group of Data Training (90%) Testing (10%) Total
SP-Before CP 481 53 534
SP-After CP 831 92 923
ST-Before CP 1931 214 2145
ST-After CP 4890 543 5433
Total 8133 902 9035

Several training experiments with various combinations of training parameters have
been carried out to identify the optimal network structure and configuration that produces
minimum errors during the training phase. Due to the limited time available for
conducting this research, some of parameters such as number of hidden layers and number
of hidden neurons in each hidden layer were predetermined as 2 and 15 respectively.
These values are considered adequate for the complexity of the network in this work but
should be fine-tuned in the future. Other training parameters such as learning rate and
momentum values have been changed (increased and decreased) during the training
process in order to increase the complexity of the network structure. We consider that the
network has learned the representative examples well enough when the error has reached
a value lower than a predetermined limit, or the number of training cycles has reached a
value equal to a predetermined limit. Table (3) presents the training error and iterations
limit values for each group.

Table 3: Errors and iterations training limit values

Group of Data Error limit Iterations limit

SP-Before CP 1 30000
SP-After CP 1 30000

ST-Before CP 10 20000
ST-After CP 10 75000

TESTING OF ANN MODEL

At the end of the training phase, the experiment that produced lower error value in
each group has been selected to verify its performance and generalization capability. This
is done by carrying out a validation test, which includes exposing the network to a new
subset of inputs not previously seen by the network. The predicted outputs were then
compared with the actual outputs. If the validation test shows acceptable results then the
neural network is validated, otherwise, the network has to be retrained by adding to the
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training sets the situations of the test sample that generated unacceptable results. The
development procedure of the proposed ANN model is illustrated in Figure (4).

Prepare training and testing patterns
(input & output vectors)

v

-Import training & testing patterns into Neuro-WBprediction Software.

-Encoding, & normalising input data.

-Create Error Progress file: the file in which the value of an Average Sum-
Squared Error that corresponds to every training cycle is saved in.

-Create Weights file: the file in which the weights values of the training
experiments are saved in.

-Setup network configuration (input neurons, hidden neurons, etc) and training
parameters (learning rate, momentum, ete).

Train network using BP algorithm

Increase training sets
Change network configuration by adding test samples

and traming parameters

r 3

Is
Av. sse <= limit value
OR
No. of cveles = limit value

No

Test network with specified test sample

Is
Test satisfied?

- Save trained data (net. configuration, training parameters and
weights)

v

Retrain model when new data becomes available

Figure 4: ANN model development procedure

RESULTS AND DISCUSSION

With implementing the training and testing procedure adopted in this research
work, twenty training experiments (five for each group) have been carried out as shown
in Table (4). The experiments marked with asterisk (nos. 2, 6, 11 and 16) have presented
the best network structures.
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Table 4: Training experiments data of ANNs implemented in the research

- - - = .

PSS |E2 | £ |E|cg|2g =R =7 gL g i~
* =2 “ 7| 4= 2= " z | = ) = s

1 w |1 1] 2 15 0.1 09 | 481 | 300000 | 9.111

2= :; 11 1 2 15 0.3 0.7 481 300000 5.121
3 % 11 1 2 15 5 0.5 481 300000 7.687

4 TR 15 0.7 0.3 481 | 300000 | 17.396

5 TN 15 09 0.1 481 | 300000 | 13.398

6~ " 11 1 2 15 0.1 0.9 831 300000 2.394
7 Folufi] o2 15 3 0.7 831 | 300000 | 3.518

8 = 11 1 2 15 5 0.5 831 300000 | 45.543

9 ;) 11 1 2 15 0.7 0.3 831 300000 2.857

10 Tl 2 15 09 0.1 831 | 300000 | 3.244

11~ 7 11 1 2 15 0.1 0.9 1931 | 200000 | 108.21
12 ; 11 1 2 15 3 0.7 1931 | 200000 | 110.58

13 j:; 11 1 2 15 5 0.5 1931 | 200000 | 115.12

14 E) 11 1 2 15 0.7 0.3 1931 | 200000 | 109.02

15 ~ 11 1 2 15 0.9 0.1 1931 | 200000 | 110.16

16 * o 11 1 2 15 0.1 0.9 4890 75000 44377
17 ; 11 1 2 15 3 0.7 4890 75000 16.389

18 = 11 1 2 15 5 0.5 4890 75000 49.651

19 "Q 11 1 2 15 0.7 0.3 4890 75000 52.440

20 Tl || 2 15 0.9 0.1 | 4890 | 75000 | 51.093

The graphs shown in Figures (5-8) represent the training average sse on the y-axis
against the number of epochs elapsed on the x-axis for the best networks (experiments).
Epochs represent a complete pass through the network of the entire set of training
patterns. The graphs generally illustrate downward movement of the error rate as learning
progressed, indicating that the average error decreased between actual and predicted
results.
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Figure 5: Training progress for experiment no. 2

Journal of Engineering Research (University of Tripoli, Libya) Issue (24)  September 2017 9



In all four experiments, it is worth noting that the neural networks settled at the
lowest possible training errors that no further significant decrease could be achieved, and
the training was stopped when the epochs elapsed reached to the predetermined limit of
training cycles (finished by epoch condition). It can also be noticed that in experiments 2
and 6, the network errors obtained were closer to the limit values than those errors
obtained in experiments 11 and 16.

Networks P-Afler(P: Progress fr Experinent No. 6
300

150

Av. SSE

100

IH‘ | |

3000 6000 9000 12000 15000 18000 21000 24000 27000
epach

Figure 6: Training progress for experiment no. 6
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Figure 7: Training progress for experiment no. 11
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Figure 8: Training progress for experiment no. 16

In order to verify the prediction performance of the developed ANN models and
identify the level of learning acquired during training process, the relative difference
between ANN and actual outputs were calculated for all training and testing patterns. This
was done by dividing the absolute value of the difference between ANN and actual
outputs on the actual output value. The resulted value was then multiplied by 100.
Training and testing patterns were grouped by their relative difference, as shown in Table

(5)

The results presented in Table (5) show that the ANN models of experiments 2 and
6 were properly learned almost 20% of the patterns presented to them (i.e. with no
difference between ANN and actual outputs), and almost 75% of the patterns with less
than 50% difference. Similarly, the other two models (experiments 11 and 16) were
properly learned almost 10% of the patterns presented to them (i.e. with no difference
between ANN and actual outputs), and almost 50% of the patterns with less than 50%
difference.

Table 5: Summary of patterns grouped by their relative difference

SP-Before CP SP-After CP ST-Before CP ST-After CP
(exp. 2) (exp. 6) (exp. 11) (exp. 16)
% of Diff. | Training | Testing | Training | Testing | Training | Testing | Training | Testing

Network

89 8 167 16 158 19 522 59

0 (18.5%) | (15.1%) | (20.1%) | (17.4%) (8.2%) (8.9%) (10.7%) | (10.9%)

282 27 426 50 815 76 1745 189

1301 s8.6%) | (50.9%) | (513%) | (543%) | (42.2%) | (355%) | (35.7%) | (348%)

101 15 206 22 498 59 1213 142

0100 1 0100 | @283%) | 48%) | 239%) | 258%) | @T.6%) | 248%) | 262%)

- 100 9 3 32 4 460 60 1410 153
(1.9%) | (5.7%) | (3.9%) | (43%) | (23.8%) | (28.0%) | (28.8%) | (28.2%)
Total 481 53 831 92 1931 214 4890 543
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On the other hand, it can be seen that the ANN models of experiments 2 and 6 were
properly predicted almost 15% of the testing outputs (i.e. with no difference between
ANN and actual outputs), and 70% of the testing outputs with less than 50% difference.
Similarly, the models of experiments 11 and 16 were properly predicted 10% of the
testing outputs (i.e. with no difference between ANN and actual outputs), and 45% of the
testing outputs with less than 50% difference.

For further evaluation of ANN performance, MLR models were developed for each
group of data (SP-Before CP, SP-After CP, ST-Before CP, and ST-After CP) using
MINITAB 13 statistical package. The coefficients of determination, R?, for predicted
versus actual outputs of ANN and MLR, in training and testing patterns were calculated
and summarized in Table (6).

Table 6: R? for predicted versus actual outputs of ANN and MLR

. ; Coefficient of Determination (R?)
G1 oup c!f ]_i“t‘] Task No. of Patterns
(Network) ANN MLR
i Training 481 0.994 0.226
SP-Before CP -
Testing 53 0.988 0.286
Training 831 0.992 0.272
SP-After CP
Testing 92 0.994 0.231
Training 1931 0.585 0.279
ST-Before CP
Testing 214 0.583 0.289
Training 4890 0.598 0.222
ST-After CP -
Testing 543 0475 0.226

When comparing the R?values of the ANN versus actual outputs for the same group
of data with the corresponding values of the MLR versus actual outputs, it can be noticed
that the ANN and actual outputs demonstrated higher statistical correlation than the MLR
and actual outputs for all groups of data.

The ANN models for SP-Before CP and SP-After CP networks showed that they
well represented the training patterns with very high statistical correlation (R?=0.994 and
R2=0.992 respectively) between the ANN and actual outputs, while the ANN models for
ST-Before CP and ST-After CP networks showed that they represented the training
patterns with moderate statistical correlation (R>=0.585 and R?=0.598 respectively)
between the ANN and actual outputs. These moderate values of R? were due to the large
variety of the input patterns.

IMPLEMENTATION OF THE DEVELOPED ANN MODEL

In order to implement the designed ANN model, interactive and user friendly
computer software has been developed. The developed software is named; Neuro-WB
prediction, an acronym for neural networks wire breaks prediction. Microsoft Visual
BASIC (VB6.0) programming language was used for designing and programming the
forms and modules (functions) that drive the Neuro-WB prediction software. It was
designed to import data patterns and automatically prepare it for training and testing. Two
modes for predicting the number of wire breaks were provided: the first mode is to predict
wire breaks for a single pipe, and the second mode is to predict the number of wire breaks
for group of pipes in one time (batch prediction). Figure (9) shows the architecture of the
developed software.
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Neuro-WB prediction
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Figure 9: Architecture of Neuro-WB prediction software

When Neuro-WB prediction starts, the Multi-Tab window is displayed. This
window provides the user with three main options to use the software. These options are:
e Predict the number of wire breaks for single pipe or batch of pipes.

e Training and testing neural networks, save trained neural networks and open
trained neural networks.

e View data patterns used in the training of neural networks.
Figures (10-11) show selected screenshots of Neuro-WB prediction software for
illustration.

Welcome to Neurn-WBpredictor

& Wire Breaks Prediction 1 ] Training Meural Metworks T Yiew Training Samples
Neural Network Selection Predicted Wire Breaks (for Group of Pipes)
Pipe Type Cathodic Protection Input Diata File
i Standard Pipe (ST) " Pipe without Cathodic Protection CRetITIe
@ Special Cutlet Pipe (SOP) & Pipe under Cathodic Protection

Mo. of Samples |

Neural Network Input Variables Batch Prediction |

Predicted Wire Breaks (for Single Pipe)

Monitoring Period {in days) ... ‘ 334

Pipe Age (in days) ‘ 6358 3
Soil Resistivity (in ohm-crm) ‘ 3700 Q
Design Pressure Rate {in bars) ... ‘m j m“
Design Soil Density (in ka/cm3) ..... [2100 ~1 4.0 Special Pipe
Design Height of Sail Caver {in m) ‘25 j m“
R 1= =T OO . ‘Dguh‘g j L
Tim
Wire Diameter {n mm) .o, ‘ass j | P&'edict Wire Breaks
Wire Pitch {in mm) ‘ 138 .

Exit

Figure 10: Wire breaks prediction for single pipe
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Welcome to Neuro-WBpredictor

&8 Wvire Breaks Prediction T 1 Training Neural Networks T View Training Samples
Heural Hetwork Selection
Pipe Type Cathodic Protection:
¢ Standard Fipe (ST f* Pipewithout Cathodic Protection
View Data Exit
v Special Outlet Pipe (S0P} " Pipe under Cathodic Protection

'wire Breaks| Monitoring pl Age | Resistivity  [wiap | Pressure rab|'wite dia [Wwire pitch | Soil cover | Soil density

3 30 4686 12500 2 12 4.83 121 3 2100

1 el B5ET 2280 2 10 4.83 138 3 2100

1 30 5173 16700 2 10 4.83 138 3 2100

1 20 5118 1E700 2 10 4.88 1328 3 2100

1 30 5332 18000 2 10 4.83 138 3 2100

1 20 5506 E400 2 10 4.88 1328 3 2100

1 30 5405 3600 2 10 4.83 138 3 2100

1 20 4873 18500 2 10 488 138 3 2100

2 a0 4332 G000 2 10 4.88 118 3 2100

2 30 4951 2947 2 10 4.88 138 3 2100

2 a0 5836 17700 2 10 4.88 118 3 2100

2 30 5203 23300 2 10 4.88 138 3 2100

2 a0 5430 118700 2 10 4.88 118 3 2100

2 30 4657 12000 2 10 488 138 3 2100

4 a0 5376 5333 2 10 4.88 118 3 2100

4 30 G367 14300 2 10 488 138 3 2100

7 el H344 EE00 2 10 4.82 138 e} 2100

10 30 5333 E300 2 10 488 138 3 2100

15 el BEE1 Moo 2 10 4.82 138 e} 2100

15 30 5300 12600 2 10 488 138 3 2100

1 el 5448 14000 1 E E.35 1452 e} 2100

2 i} 5441 3500 2 g 4.83 15.78 3 2100

2 el 5431 3500 2 2 4.82 1578 3 2100 -

This sample contains: 481
4] 4 View samples of SP pipe type that recorded wire breaks prior to CP installation | BN

Figure 11: Viewing training samples

CONCLUSIONS

We have studied the feasibility of using ANN techniques to predict wire breaks in
PCC pipes and implemented the developed models based on real-world acoustic
monitoring data of the MRP in Libya. Various network structures were experimented
using Back-Propagation Neural Network (BPNN) training algorithm. Overall, the
application of ANN techniques for predicting PCCP wire breaks appears feasible and the
prediction performance of good quality. The ANN model has been developed into a
software tool named Neuro-WB prediction to enable regular applications of the model.
The proposed model will eventually be further integrated into the comprehensive Pipe
Risk Management System (PRMS) currently being developed by MRA to help in
estimating the rate of deterioration for uncoated pipes and then prioritize inspection and
maintenance measures needed to prevent future deterioration and eventual failure of the
distressed pipes, which is considered an important function of the PRMS.
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NOMENCLATURE

ANN Artificial Neural Networks

BPNN Back-Propagation Neural Network
CP Cathodic Protection

GPR Ground Penetrating Radar

MLR Multiple Linear Regression

MRA Man-Made River Authority

MRP Man Made River Project

NDT Non-Destructive Testing

PCCP Pre-stressed Concrete Cylinder Pipe
PCI Pipe Criticality Index
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http://www.gmmra.org/

PRMS Pipe Risk Management System

RFEC/TC Remote Field Eddy Current/Transformer Coupling
SP Special Pipes
ST Standard Pipes
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