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 الملخص

 تقییم ر علىثالتي توالمشاكل.  إلى بعض )PCCP(نابیب الخرسانیة سابقة الاجھاد الأ تتعرض
حالة وأداء خطوط الانابیب بواسطة الفحص المباشر باستخدام تقنیات متمثلة في الرنین المغناطیسي 

فحص مقاطع محددة من  الاستخدام. ومن الطرق العلمیة شائعة GPRرادار الو أوالرصد الصوتي 
 كلفة العالیة الناتجة من عملیة الفحص المباشر وعدم القدرةخطوط الانابیب في أوقات معینة، نتیجة الت

ال الفحص تعطي اعم قدعلى تطبیق تقنیات تحت ظروف التشغیل التي تسود داخل خطوط الانابیب. و
یمكن تحسین ھذا الوضع عن طریق استخدام والمباشر صورة غیر كاملة عن حالة خطوط الانابیب. 

وضع الحالي وأداء نظام خطوط الانابیب بناءً على نتائج الفحوصات نماذج ذكیة قادرة على التنبؤ بال
نابیب خرسانیة أفي ھذه الدراسة تطویر نماذج للتنبؤ بانقطاع الاسلاك في تم السابقة لھذه الانابیب. لقد 

حیث تم تطبیق ھذه  ،)ANN(باستخدام تقنیات الشبكات العصبیة الاصطناعیة  )PCCP(سابقة الاجھاد 
قة نابیب خرسانیة سابألى البیانات الناتجة من عملیات الفحص بالرصد الصوتي على النماذج ع

اذج مع نم اً الاجھاد في مشروع النھر الصناعي. وقد أظھرت نماذج الشبكات العصبیة توافق جید جد
انقطاعات بحالیاً ھذه النماذج بشكل روتیني في التنبؤ وتستخدم التدریب واعطت نتائج جیدة في التنبؤ. 

 الانابیب الخرسانیة سابقة الاجھاد بمشروع النھر الصناعي. اسلاك
 

ABSTRACT 
Many owners of Pre-stressed Concrete Cylinder Pipe (PCCP) around the world 

experience regular failures in their pipelines. The condition and performance of any water 
pipeline can be assessed by direct inspection using techniques such as electromagnetic 
resonance, acoustic monitoring, or GPR radar. It is common practice to inspect only a 
few sections of a pipeline at any point in time. This is largely due to the very high costs 
associated with direct inspection and the inability to apply direct inspection techniques 
under the operating conditions that prevail inside the pipeline. Thus, direct inspection 
activities can only provide a very incomplete picture of the state of the water mains. The 
situation can be improved with the use of intelligent models capable of predicting the 
current condition and performance of the pipeline system based on observations of 
historical conditions and inspection of the results. We have developed such models for 
PCCP wire break predictions using Artificial Neural Network (ANN) techniques. The 
models are applied to real-world acoustic monitoring data collected from the Man Made 
River Project (MRP) in Libya. The ANN models are in good agreement with the training 
patterns and show good prediction performance. The developed models are now routinely 
used for the prediction of PCCP wire breaks by MRP. 
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INTRODUCTION 

Many water authorities and agencies around the world use Pre-stressed Concrete 
Cylinder Pipes (PCCPs) as transmission and distribution systems. As these systems 
degrade over time, the evaluation of their structural integrity and performance becomes a 
major concern for owners and operators. Corrosion-induced failure in the pre-stressing 
wires of PCCP can result in ruptures with consequent interruption in service, damage to 
property and repair costs.  Such ruptures tend to occur suddenly without prior anticipation 
by the operator. 

According to Makar and Kleiner [1], there are two possible approaches to assess 
the condition of water pipelines. The first approach, indirect indicators and statistical 
methods, involves the collection of data related to pipe damage. This data could be used 
to develop statistical indicators or intelligent models to assess the condition of the pipes. 
The second approach, direct inspection and monitoring techniques, involves the 
inspection of the pipeline using non-destructive evaluating techniques (such as remote 
field eddy current/transformer coupling, acoustic monitoring or GPR radar), which detect 
problems (defects) in the pipes. In general, the second approach is severely hampered by 
limited access to the buried pipes and the high cost associated with conducting non-
destructive inspections, which prevents the constant monitoring of the pipes. The first 
approach would require model development. 

Artificial Neural Networks (ANNs) present a promising direction for the 
development of predictive models to assess the pipe condition because of their learning 
ability and the property of generalization. A number of successful developments of ANNs 
for condition assessment of different types of buried pipes have been presented lately.  
Systems with PCCPs have not been addressed to date. 

Najafi and Kulandaivel [2] presented an ANN model for predicting the sewer pipes 
condition based on historical data. A back-propagation neural network algorithm was 
used for training and testing. Seven input variables were used for the neural network 
modeling, namely length of pipe segments, diameter of pipe segments, type of pipe 
material, age of pipe, depth of cover, slope of pipe segments and type of sewer.   Al-
Barqawi and Zayed [3] applied the ANN approach to develop a model for assessment and 
prediction of water mains condition rating. Their research covered three types of pipes, 
namely asbestos, cast iron and ductile iron pipes. The input variables included pipe type, 
size, age, breakage rate, Hazen-Williams factor, excavation depth, soil type and top road 
surface.  More recently, a neural network model for prediction of water cast iron pipeline 
failure has been reported by Achim, Ghotb and McManus [4]. The developed model 
included six input variables: pipe diameter, year of construction, pipe age, length and the 
pair of geographical coordinates. The model was developed to predict the number of 
failures that would occur in a pipeline per kilometer and year.  

Geem et al [5] present a water pipe condition assessment model to predict the 
overall pipe condition index using ANNs. The model has been applied to real-world 
system in South Korea. A back-propagation neural network algorithm has been used for 
training and testing. The model incorporates eleven inputs: pipe material, pipe diameter, 
pressure head, inner coating, outer coating, and electric recharge, bedding condition, pipe 
age, trench depth, soil condition and number of road lanes. 
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This paper presents the first development of ANN models for the prediction of 
PCCP conditions. The models are implemented on the basis of a large real-world system 
in Libya, the Man-Made River Project (MRP). The Man-Made River Authority (MRA), 
the authority dedicated for the implementation and operation of the MRP, experienced a 
series of five pipe ruptures between August 1999 and April 2001. The reason of these 
ruptures was the corrosion-induced failure of the pre-stressing wires of PCCP. At the 
beginning of the problem, MRA developed a simplified pipe classification model known 
as Pipe Criticality Index (PCI). This index assisted in ranking the distressed pipes 
according to their criticality, which helped in prioritizing inspection and monitoring as 
well as the establishment of repair and replacement plans for affected sections of 
pipelines. At the same time, MRA recognized the need for a long-term management tool 
that would facilitate more comprehensive repairing and maintenance decisions. 
Moreover, enable taking the appropriate preventive measures through continuous 
monitoring and estimation of the remaining service life of each pipe. Thus incorporating 
structural, chemical and statistical models based on pipe databases as well as all data 
collected from non-destructive inspections. The ANN models presented in this work have 
been developed to address these needs. They provide managers and operators of PCCP 
water mains with a means to determine cause and time deterioration of their PCCP is 
occurring so as to enable to better decision-making about monitoring, inspection and 
rehabilitation of the pipeline networks.  
 
APPLICATION BACKGROUND 

The MRP is a major water supply project in the State of Libya. It was constructed 
to extract and convey high quality ground water from deep aquifers in the Sahara Desert 
to the northern coastal strip where over 90% of the population lives. To date, three phases 
(I, II and III) of the project have been completed and are under operation. These consist 
of 463,440 (3,847 km) PCC pipes of mainly 4.0 meter diameter that transport four million 
cubic meters of water per day from 674 production wells at Sarir, Tazerbo, East Jabal 
Hasouna and North East Jabal Hasouna to end reservoirs at coastal strip. The layout of 
these phases as well as the future phases is shown in Figure (1) [6, 7]. 

 
Figure 1: Layout of MRP phases (MRA, 2009) 
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MRA experienced a series of five ruptures in 4.0 m diameter pipes of the Phase I 
system. The first pipe ruptured was on 19 August 1999 while the second rupture was on 
04 September 1999. Three more ruptures occurred between January 2000 and April 2001. 
Locations of these ruptures on the pipelines are shown in Figure (2). 

On-site investigations and studies carried out by MRA concluded that the ruptures 
were caused by the corrosion-induced failure of the pre-stressing wires. All these ruptures 
resulted in an emergency (unplanned) shutdown, which is not acceptable to MRA as the 
project supplies water to the most of urban communities along the MRP pipeline route. 

 

 
Figure 2: Locations of pipe ruptures on Phase I pipelines 

 
To minimize the risk of occurrence of more rupture events and maintain the 

uninterrupted flow of water, MRA adopted a full-scale rehabilitation program aimed at 
identifying and treating all affected pipes. This plan involved conducting an assessment 
program for pipeline condition based on Non-Destructive Testing (NDT), and installing 
a Cathodic Protection (CP) system on the entire Phase I system. A simplified pipe 
classification model was established and used to classify the distressed pipes according 
to their criticality. The rehabilitation program has enabled MRA to conduct a successful 
selective and preventive maintenance to extend the service life of its enormous and 
complex pipeline network. Since April 2000, the date of using NDT techniques in MRP, 
MRA has inspected a total of approximately 1655 km of Phase I pipes using both Remote 
Field Eddy Current/Transformer Coupling (RFEC/TC) and P-Wave. Some sections of 
pipelines have been inspected three times over a period of 6-years. In total, 6960 pipes 
were found to be distressed. All those distressed pipes were uncoated (white) pipes. Phase 
I pipelines consist of 60% (1176 km) uncoated pipes and 40% (750 km) coated (black) 
pipes. Also, MRA had installed an acoustic monitoring system to monitor sections of their 
pipelines. It has monitored 173 sites spanning 316.3 kilometers of white pipe sections. 
Some of these sites have been monitored twice. A very large amount of data has been 
collected showing wire breaks as they occur in real-time.  This wealth of data can be 
exploited with the use of ANNs in order to predict future PCCP failures. 
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DATA COLLECTION AND SELECTION OF ANN MODEL INPUTS 
Results of acoustic monitoring such as number, location, date, time and type of the 

pre-stressing wire breaks are recorded, as they occurred, and saved into the acoustic 
monitoring database. A total of 9035 records of data containing pipe ID, number of 
recorded wire breaks, and time between first and last wire break were prepared and linked 
with both Pipe As-Built and Pipe History databases in order to extract the most important 
design, physical and environmental available data that have the major effect on the 
deterioration process of PCCP.  
 

Table 1: Input variables included in the ANN model 

 
 

Nine variables (factors) were identified and selected as inputs to the proposed ANN 
model. Description of these variables is presented in Table (1), and an illustration of the 
designed ANN structure with input and output variables is shown in Figure (3). 

Previous MRA studies concluded that the rate of wire breaks recorded by acoustic 
monitoring pre and post installation of CP system for both Standard and Special pipe type 
is different. This was investigated through the on-site inspections and excavations 
conducted on the pipelines [8]. Based on that, the collected set of data has been divided 
into four groups in order to increase the performance of the neural networks and achieve 
high accuracy of predicted outputs.  

Journal of Engineering Research (University of Tripoli, Libya)     Issue (24)      September 2017            5 



• Group 1: SP-Before CP contains Special Pipes (SP) that recorded wire breaks 
prior to the installation of the CP system. 

 
• Group 2: SP-After CP contains Special Pipes (SP) that recorded wire breaks after 

the installation of the CP system. 
 
• Group 3: ST-Before CP contains Standard Pipes (ST) that recorded wire breaks 

prior to the installation of the CP system. 
 
• Group 4: ST-AfterCP contains Standard Pipes (ST) that recorded wire breaks 

after the installation of the CP system. 
 

 
 

Figure 3: Wire breaks prediction ANN model 
 
TRAINING OF ANN MODEL 

Once the ANN has been designed, it has to be trained in order to produce the 
expected output values. This training operation is accomplished by selecting a proper 
training algorithm for the problem to be solved. Several training algorithms have been 
developed for ANNs. Among various existing training algorithms, Back-Propagation 
algorithm was selected in this research work. It is commonly used algorithm, and has 
been proven to be successful in practical applications, despite its disadvantages of being 
time-consuming and complex. [9-11]. 

To successfully apply ANN in prediction of PCCP wire breaks many input variables 
have to be converted into a suitable format for presentation to the neural networks. The 
data representations of the neural network inputs are categorized into two groups. The 
first group has a continuous-valued data type and will be properly scaled, and the second 
group has an enumerated data type and will be properly encoded and decoded. 

The dataset of 9035 patterns (each pattern formed by input and output vectors) has 
been randomly split into 90% of the data for training and 10% of the data for testing. 
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Number of patterns allocated to the training and testing for each group are shown in Table 
(2). 

 
Table 2: Allocation of training and testing data patterns 

Group of Data Training (90%) Testing (10%) Total 

SP-Before CP 481 53 534 

SP-After CP 831 92 923 

ST-Before CP 1931 214 2145 

ST-After CP 4890 543 5433 

Total 8133 902 9035 
 
Several training experiments with various combinations of training parameters have 

been carried out to identify the optimal network structure and configuration that produces 
minimum errors during the training phase. Due to the limited time available for 
conducting this research, some of parameters such as number of hidden layers and number 
of hidden neurons in each hidden layer were predetermined as 2 and 15 respectively. 
These values are considered adequate for the complexity of the network in this work but 
should be fine-tuned in the future. Other training parameters such as learning rate and 
momentum values have been changed (increased and decreased) during the training 
process in order to increase the complexity of the network structure. We consider that the 
network has learned the representative examples well enough when the error has reached 
a value lower than a predetermined limit, or the number of training cycles has reached a 
value equal to a predetermined limit. Table (3) presents the training error and iterations 
limit values for each group. 
 

Table 3: Errors and iterations training limit values 
 

Group of Data Error limit Iterations limit 

SP-Before CP 1 30000 

SP-After CP 1 30000 

ST-Before CP 10 20000 

ST-After CP 10 75000 
 
TESTING OF ANN MODEL 

At the end of the training phase, the experiment that produced lower error value in 
each group has been selected to verify its performance and generalization capability. This 
is done by carrying out a validation test, which includes exposing the network to a new 
subset of inputs not previously seen by the network. The predicted outputs were then 
compared with the actual outputs. If the validation test shows acceptable results then the 
neural network is validated, otherwise, the network has to be retrained by adding to the 
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training sets the situations of the test sample that generated unacceptable results. The 
development procedure of the proposed ANN model is illustrated in Figure (4).  

 

 
 

Figure 4: ANN model development procedure 
 
RESULTS AND DISCUSSION 

With implementing the training and testing procedure adopted in this research 
work, twenty training experiments (five for each group) have been carried out as shown 
in Table (4). The experiments marked with asterisk (nos. 2, 6, 11 and 16) have presented 
the best network structures. 
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Table 4: Training experiments data of ANNs implemented in the research 

 
 

The graphs shown in Figures (5-8) represent the training average sse on the y-axis 
against the number of epochs elapsed on the x-axis for the best networks (experiments). 
Epochs represent a complete pass through the network of the entire set of training 
patterns. The graphs generally illustrate downward movement of the error rate as learning 
progressed, indicating that the average error decreased between actual and predicted 
results.  
 

 
Figure 5: Training progress for experiment no. 2  
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In all four experiments, it is worth noting that the neural networks settled at the 
lowest possible training errors that no further significant decrease could be achieved, and 
the training was stopped when the epochs elapsed reached to the predetermined limit of 
training cycles (finished by epoch condition). It can also be noticed that in experiments 2 
and 6, the network errors obtained were closer to the limit values than those errors 
obtained in experiments 11 and 16. 

 

 
 

Figure 6: Training progress for experiment no. 6 
 

 
Figure 7: Training progress for experiment no. 11  
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Figure 8: Training progress for experiment no. 16  

 
In order to verify the prediction performance of the developed ANN models and 

identify the level of learning acquired during training process, the relative difference 
between ANN and actual outputs were calculated for all training and testing patterns. This 
was done by dividing the absolute value of the difference between ANN and actual 
outputs on the actual output value. The resulted value was then multiplied by 100. 
Training and testing patterns were grouped by their relative difference, as shown in Table 
(5) 

The results presented in Table (5) show that the ANN models of experiments 2 and 
6 were properly learned almost 20% of the patterns presented to them (i.e. with no 
difference between ANN and actual outputs), and almost 75% of the patterns with less 
than 50% difference. Similarly, the other two models (experiments 11 and 16) were 
properly learned almost 10% of the patterns presented to them (i.e. with no difference 
between ANN and actual outputs), and almost 50% of the patterns with less than 50% 
difference. 
 

Table 5: Summary of patterns grouped by their relative difference 
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On the other hand, it can be seen that the ANN models of experiments 2 and 6 were 
properly predicted almost 15% of the testing outputs (i.e. with no difference between 
ANN and actual outputs), and 70% of the testing outputs with less than 50% difference. 
Similarly, the models of experiments 11 and 16 were properly predicted 10% of the 
testing outputs (i.e. with no difference between ANN and actual outputs), and 45% of the 
testing outputs with less than 50% difference. 

For further evaluation of ANN performance, MLR models were developed for each 
group of data (SP-Before CP, SP-After CP, ST-Before CP, and ST-After CP) using 
MINITAB 13 statistical package. The coefficients of determination, R2, for predicted 
versus actual outputs of ANN and MLR, in training and testing patterns were calculated 
and summarized in Table (6). 
 

Table 6: R2 for predicted versus actual outputs of ANN and MLR 

 
 

When comparing the R2 values of the ANN versus actual outputs for the same group 
of data with the corresponding values of the MLR versus actual outputs, it can be noticed 
that the ANN and actual outputs demonstrated higher statistical correlation than the MLR 
and actual outputs for all groups of data. 

The ANN models for SP-Before CP and SP-After CP networks showed that they 
well represented the training patterns with very high statistical correlation (R2=0.994 and 
R2=0.992 respectively) between the ANN and actual outputs, while the ANN models for 
ST-Before CP and ST-After CP networks showed that they represented the training 
patterns with moderate statistical correlation (R2=0.585 and R2=0.598 respectively) 
between the ANN and actual outputs. These moderate values of R2 were due to the large 
variety of the input patterns.  
 
IMPLEMENTATION OF THE DEVELOPED ANN MODEL 

In order to implement the designed ANN model, interactive and user friendly 
computer software has been developed. The developed software is named; Neuro-WB 
prediction, an acronym for neural networks wire breaks prediction. Microsoft Visual 
BASIC (VB6.0) programming language was used for designing and programming the 
forms and modules (functions) that drive the Neuro-WB prediction software. It was 
designed to import data patterns and automatically prepare it for training and testing. Two 
modes for predicting the number of wire breaks were provided: the first mode is to predict 
wire breaks for a single pipe, and the second mode is to predict the number of wire breaks 
for group of pipes in one time (batch prediction). Figure (9) shows the architecture of the 
developed software. 
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Figure 9: Architecture of Neuro-WB prediction software 

 
When Neuro-WB prediction starts, the Multi-Tab window is displayed. This 

window provides the user with three main options to use the software. These options are: 
• Predict the number of wire breaks for single pipe or batch of pipes. 

 

• Training and testing neural networks, save trained neural networks and open 
trained neural networks. 

 

• View data patterns used in the training of neural networks. 
Figures (10-11) show selected screenshots of Neuro-WB prediction software for 
illustration. 
 

 
 

Figure 10: Wire breaks prediction for single pipe 
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Figure 11: Viewing training samples 
 

CONCLUSIONS 
We have studied the feasibility of using ANN techniques to predict wire breaks in 

PCC pipes and implemented the developed models based on real-world acoustic 
monitoring data of the MRP in Libya. Various network structures were experimented 
using Back-Propagation Neural Network (BPNN) training algorithm. Overall, the 
application of ANN techniques for predicting PCCP wire breaks appears feasible and the 
prediction performance of good quality. The ANN model has been developed into a 
software tool named Neuro-WB prediction to enable regular applications of the model. 
The proposed model will eventually be further integrated into the comprehensive Pipe 
Risk Management System (PRMS) currently being developed by MRA to help in 
estimating the rate of deterioration for uncoated pipes and then prioritize inspection and 
maintenance measures needed to prevent future deterioration and eventual failure of the 
distressed pipes, which is considered an important function of the PRMS. 
 
REFERENCES 

[1] Makar, J. M. & Kleiner, Y., Maintaining Water Pipeline Integrity. Proceedings of 
the AWWA Infrastructure Conference and Exhibition, Baltimore, Maryland, 12-15 
March 2000, pp. 1-13. 

[2] Najafi, M. & Kulandaivel G., Pipeline Condition Prediction Using Neural Networks 
Models. Proceedings of the ASCE Pipelines Conference, Houston, Texas 21-24 
August 2005, pp. 767-781.  

Journal of Engineering Research (University of Tripoli, Libya)     Issue (24)      September 2017            14 



[3] Al-Barqawi, H. & Zayed, T., Condition Rating Model for Underground 
Infrastructure Water Mains. Journal of Performance of Constructed Facilities, 2006, 
pp. 126-135. 

[4] Achim, D., Ghotb, F. & McManus, K., Prediction of Water Pipe Asset Life Using 
Neural Networks. Journal of Infrastructure Systems, 2007, pp. 26-30. 

[5] Geem, Z., Tseng, C., Kim, J. & Bae, C., Trenchless Water Pipe Condition 
Assessment Using Artificial Neural Networks’, Proceedings of the ASCE Pipelines 
Conference, Boston, Massachusetts, 8-11 July 2007. 

[6] Essamin, O. & Holley, M., Man Made River Authority (MRA): The Role of 
Acoustic Monitoring in the Management of the Worlds Largest Prestressed 
Concrete Cylinder Pipe Project. Proceedings of the ASCE Pipelines Conference, 
San Diego, California 1-4 August 2004. 

[7] MRA (2009). Great Man-Made River Authority Website [Online], Available at: 
http://www.gmmra.org/. 

[8] Essamin, O., Evaluation of CP Performance and Acoustic Monitoring results for 
White Pipe Sections on Phase I System – Technical Report, Planning, Follow-up 
and QA Dept., The Man-made River Authority, November 20, Benghazi, Libya, 
2006. 

[9] Tsoukalas, L. H. & Uhrig, R. E., Fuzzy and Neural Approaches in Engineering. 
John Wiley & Sons, Inc., 1997, New York. 

[10] Fu, L. 1994, Neural Networks in Computer Intelligence, McGraw-Hill Inc., 1994, 
New York. 

[11] Vemuri, V.R., Artificial Neural Networks: Concepts and Control Applications, 
IEEE Computer Society Press, 1992, California. 

 

NOMENCLATURE 

ANN   Artificial Neural Networks 

BPNN   Back-Propagation Neural Network  

CP   Cathodic Protection 

GPR   Ground Penetrating Radar 

MLR   Multiple Linear Regression 

MRA   Man-Made River Authority 

MRP   Man Made River Project 

NDT   Non-Destructive Testing 

PCCP   Pre-stressed Concrete Cylinder Pipe 

PCI   Pipe Criticality Index 
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PRMS   Pipe Risk Management System 

RFEC/TC  Remote Field Eddy Current/Transformer Coupling 

SP   Special Pipes 

ST   Standard Pipes 
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