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  ملخصال
ام أولاً ـــالرȞ وضع تتمثل في من نوعها، صب فرȄدةرسانة ذات المرحلتین بتقنǽة ــــتمیز الخت

حیث تتحȞم جودة المونة المُستخدمة . خاصة انسǽابǽةذات خواص  Ǽمونة حقنهثم  الشداتفي 
أثیر نوع وȞمǽة ــــول تـــة حــــــــــالورقة دراسهذه  تُقدم. رسانة ذات المرحلتینــــلخاǼشȞل Ȟبیر في خواص 
 مقارنة . تمتانة ذات المرحلتینـــاج الخرســــــواص المونة المستخدمة في إنتـــــــالرȞام الناعم على خ

 دامخǼاست اعم مجـــروش) وذلكــــ(رمـــل الǼحر الطبǽعي ورȞام ن اعمــــالن ـامــــمن الرȞ ینــلفـمخت وعینـــــــن
 إلـــى المـــاء مع تثبیت نســــǼة (fa/c = 0.5, 1.0, 1.5) الإسمــــــنت إلى النــــاعم الرȞــام من مختلفة نســـب

 قابلǽة تعطيالرمل الطبǽعي  التي أُستخدم فیها المونةتشیر النتائج إلى أن  .(w/c = 0.45)الإسمنت 
 تؤدȞȑما . المجروشالرȞام الناعم  التي أُستخدم فیها المونةمن  للنضحتدفȘ ومقاومة أقل لل أعلى

معدل النضح، وزȄادة مقاومة  ، تقلیلتدفȘالقابلǽة  إلى تقلیل في المونة زȄادة محتوȐ الرȞام الناعم
من  %0.8و (fa/c =1.0)اعم المجروش عند ــمن الرȞام الن التي أُستخدم فیهاالمونة  وȞانت. الضغط

هذه المونة  حققتالخرسانة ذات المرحلتین، حیث  لإنتاجالإضافة الملدنة فائقة الاداء الأفضل 
  ومقاومة ضغط عالǽة. ،ممتازة للنضحتدفȘ جیدة، مقاومة  قابیلǽه

ABSTRACT  
Two-stage concrete (TSC) is characterized by its exceptional placement 

technique, whereby aggregates are first pre-placed in the formwork then injected with a 
flowable grout. The quality of TSC grout is a controlling factor of the mechanical 
strength and durability of TSC. Therefore, this study investigates the properties of grout 
mixtures incorporating two types of fine aggregate including natural sea sand and 
crushed fine aggregate. The grout mixtures proportions were prepared at a water-to-
cement ratio (w/c) of 0.45. Three fine aggregate-to-cement ratios (fa/c) of 0.5, 1.0 and 
1.5 were tested. Results indicate that grout mixtures made with natural sand exhibited 
higher flowability and lower bleeding resistance than those made with crushed fine 
aggregate. Moreover, increasing the fine aggregate content reduced the grout 
flowability, while it improved the bleeding resistance and compressive strength. It was 
concluded that grout mixture made with crushed fine aggregate, (fa/c) = 1.0, and 0.8% 
high-range water-reducing admixture (HRWRA) was the best for successful TSC grout 
since it exhibited acceptable flowability, excellent bleeding resistance and high 
compressive strength. 

KEYWORDS: Grout; Fine Aggregate; Flowability; Bleeding; Compressive Strength.  

INTRODUCTION 
Two-Stage Concrete (TSC), also known worldwide under different terms such as 

Prepacked Concrete and Preplaced Aggregate Concrete, is considered as a special type 
of concrete that is produced using a unique procedure, which differs from that of 
conventional concrete [1,2]. In TSC, coarse aggregates are first preplaced in the 
formwork, and then injected with a flowable grout mixture. The special placement 
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technique of TSC provides various technological and sustainability advantages. 
Preplacing the coarse aggregate in the formwork before injecting grout permits using 
aggregate that constitute challenges in conventional concrete production. For example, 
very heavy aggregates (e.g. magnetite) can be used in TSC production without 
segregation concerns [1]. Moreover, recycled concrete aggregates that normally cause 
loss of workability and severe pumping problems will not contribute to concrete casting 
problems in the TSC technology [3]. Likewise, the TSC technique provides cost 
benefits since coarse aggregate, which is about 60% of the used materials, is directly 
placed into formwork and only the ingredients used to produce grout, which are about 
40% of the total materials, go through mixing and pumping procedures. As a result, this 
will accelerate construction by reducing the volume of the concrete mixture and reduce 
the energy consumed in concrete mixing and pumping [1-2, 4-5]. 

Properties of the TSC grout and its ability to flow around the preplaced aggregate 
particles and fill voids have a dominant effect on the mechanical properties and 
durability of TSC [6]. The grout used in TSC normally consists of Portland cement, 
well graded fine aggregate, water, and chemical admixtures. The mixture proportions of 
TSC grouts are generally selected according to ASTM C938 [7], which mainly depend 
on the grout flowability. Previous research has concluded that grout with a time of 
efflux between 20 and 24 sec. is ideal for TSC [1, 8]. However, grout with time of 
efflux as high as 35 to 40 ± 2 sec is recommended for high-strength concrete [1]. In 
addition, the compressive strength of TSC depends on the ability of the grout to resist 
bleeding. In TSC, bleeding generally occurs at the underside of coarse aggregates, 
leading to formation of voids, which weak aggregate-grout interfacial zones, thus 
hindering the grout bond to coarse aggregates [2, 9]. Therefore, it is recommended that 
the bleeding of the TSC grout should be less than 0.5% [1]. 

The grading of the fine aggregate and its properties play a significant role in 
controlling the flowability of the grout. The used fine aggregate should be hard, dense, 
and stable [1, 2]. It was reported that using a well graded fine aggregate increased the 
stability of the grout and reduced segregation [10]. On the other hand, using fine 
aggregate with a high fineness modulus will increase the water demand, leading to a 
reduction in compressive strength and an increase of drying shrinkage. It was 
recommended that the fineness modulus of the used fine aggregate should range from 
1.2 to 2.0 [2].  

Moreover, the fine aggregate content has great influence on the flowability and 
stability of the grout mixture, thus TSC mechanical properties will be affected. It was 
reported that, at fine aggregate to cement ratio (fa/c) = 1.5 and water to cement ratio 
(w/c) = 0.4, the grout mixture was too thick to penetrate all voids between aggregate 
particles, leading to honeycombed TSC [4]. On the other hand, changing the (fa/c) ratio 
induced slight difference in TSC compressive strength [4]. It was concluded that at 
constant (w/c) ratio, the effect of different (fa/c) ratios on the TSC tensile strength was 
negligible [11], while reducing the (fa/c) ratio caused a reduction in modulus of 
elasticity [12-13].  

However, there is currently scarce data that evaluate the influence of fine 
aggregate type on the flowability and stability of TSC grouts. Therefore, this study aims 
to investigate the effect of fine aggregate type on the properties of TSC grout. Two 
types of fine aggregates (natural sea sand and crushed fine aggregate), which are 
common used in Libyan market, were compared using different fine aggregate to 
cement ratios. Moreover, the effect of high-range water-reducing admixture (HRWRA) 
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addition on the flowability of grout mixtures was monitored. The findings of this study 
should provide a database for TSC grout properties to pave the way for wider 
implementation of TSC in today’s concrete industry, especially in Libya. 

EXPERIMENTAL PROGRAM 
Materials and Grout Mixture Proportions 

Ordinary Portland cement was used for all tested grout mixtures. Table (1) 
summarizes the physical and mechanical properties of the used cement. Two types of 
fine aggregate were used. The first type was natural sea sand obtained from Zlietn 
quarry (nearly 200 km east of Tripoli city) with a specific gravity of 2.64 and absorption 
rate of 0.3%. The second type was crushed fine aggregate (Grinelya) with a specific 
gravity of 2.72 and absorption rate of 0.5%. Figure (1) shows the grading of two types 
of fine aggregate obtained from the sieve analysis. The grout mixtures proportions were 
prepared at a water-to-cement ratio (w/c) of 0.45, which was recommended to achieve 
the targeted flowability of grout for successful TSC production [6]. Three fine 
aggregate-to-cement ratios (fa/c) of 0.5, 1.0 and 1.5 were tested. A new generation, non-
chlorinated, acrylic copolymer superplasticizer / high-range water-reducing admixture 
with a specific gravity of 1.06, and pH of 6 was added at different dosages in order to 
enhance the grout’s flowability. The mixtures proportions of the tested grouts are 
provided in Table (2). 

Table 1: The Physical and Mechanical Proprieties of Cement (OPC) 
Test Results 
Cement consistency 30 % 
Initial setting time 140 minutes 
Final setting time 3.40 hours 
Soundness 0.3 mm 
Compressive strength of cement mortar at 3 days 25 MPa 
Compressive strength of cement mortar at 28 days 46 MPa 
 

 
Figure 1: Grading curve of fine aggregate (natural sand and crushed fine aggregate) 
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Table 2: Grout Mixture Proportions 

Grout 
Mixture ID 

(fa/c) 
Ratio 

Cement 
(kg/m3) 

Fine Aggregate (kg/m3) 
Water 

(kg/m3) Natural Sand 
Crushed Fine 

Aggregate 
MN1 0.5 1043 521.5 - 469 
MN2 1.0 871 871.0 - 392 
MN3 1.5 748 1122 - 337 
MC1 0.5 1048 - 524.0 472 
MC2 1.0 879 - 879.0 396 
MC3 1.5 756 - 1134.0 340 

Experimental Procedures 
All grout mixtures were prepared as per the guidelines of ASTM C938 [7]. 

Mixing and flowability measurements were conducted at room temperature (T = 23 ± 
2C). Immediately after mixing, the grout flowability was evaluated using a flow cone 
test according to ASTM C939 [8]. The flow cone test consists of measuring the time of 
efflux of 1725 ml of the grout through a specific cone having a 12.7 mm discharge tube.  

In addition, the spread flow test was conducted to investigate the effect of 
HRWRA on the point where the grout mixture starts to spread freely [14]. The grout is 
filled in a special conical mould, which is lifted straight upwards in order to allow free 
flow. From the spread-flow test, two diameters perpendicular to each other (D1 and D2) 
are determined. Then, the relative slump, Rp, which is a measure for the deformability 
of the mixture, can be calculated using the following equation (1). 

ܴ ൌ ቆ
ቀವభశವమ

మ
ቁ


ቇ
ଶ

െ 1              (1) 

Where Do represents the base diameter of the used cone (i.e. 100 mm).  
Moreover, the resistance to bleeding of the grout mixtures was also evaluated 

according to ASTM C940 [15]. 800 ml of grout mixture is poured into glass graduated 
cylinder of 1000 ml volume. After three hours, the grout bleeding is calculated as per 
equation (2): 

Grout bleeding (%) ൌ	 ೢ
భ
ൈ 100            (2) 

Where V1 is the volume of grout at the beginning of test (ml) and Vw is the volume 
decanted bleed water (ml). 

The compressive strength of the TSC grout mixtures was monitored through 
testing 50 mm cubic specimens at the age of 28 days according to ASTM C942 [16]. 
Immediately after demolding, cube test specimens were moved to a curing tank until 
testing age. 

RESULTS AND DISCUSSION 
Flow Properties of TSC Grouts 

Tables (3) and (4) report the efflux time and spread flow results for all the tested 
grout mixtures. At 0% HRWRA, it can be observed that all grout mixtures, which made 
with natural sand or crushed fine aggregate, showed very long efflux time or even did 
not show any measurable flowability. This can be attributed to that the water demand is 
lower than pore water volume that needed to fill up the voids between the solid 
particles. As a result, solid particles become connected by capillary forces. Thus, 
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lubrication between particles is diminished and grouts will not flow under their own 
weight [17, 18]. 

Table 3: Grout Efflux Time Results 

Grout Mixture ID 
Grout Efflux Time (sec) 

HRWRA Dosage  
0.0 % 0.4 % 0.8 % 

MN1 Long time* 21 11 
MN2 Long time* 37 15 
MN3 No Flow Long time* 86 
MC1 Long time* 33 19 
MC2 No Flow Long time* 47 
MC3 No Flow No Flow No Flow 

*Long time; Grout efflux time > 300 sec 

Table 4: Grout Spread Flow Results 

Grout Mixture ID 
Grout Spread Flow (mm) 

HRWRA Dosage  
0.0 % 0.4 % 0.8 % 

MN1 172 293 350 
MN2 131 191 320 
MN3 113 133 230 
MC1 144 224 331 
MC2 100 164 238 
MC3 100 100 108 

However, adding dosages of HRWRA into grout mixture enhanced the grout’s 
flowability as illustrated in Tables (3) and (4). For instance, addition of 0.4 % HRWRA 
improved the flowability of MN1 and MC1 mixtures to 21 sec and 33 sec, respectively. 
In addition, grout mixtures (MN1 and MC1) made with addition of 0.4% HRWRA 
achieved about 70% and 56% higher spread flow, respectively, compared with those 
made without addition of HRWRA. Indeed, HRWRA prevents the cement-water 
agglomeration and the formation of flocs through the steric repulsion mechanism. 
Moreover, HRWRA has unique polyethylene oxide side chains, which move in water 
and steer the cement grains to disperse evenly into the grout, thereby increasing the 
flowability [19-20].  

On the other hand, grout mixtures made with natural sand exhibited better 
flowability than those made with crushed fine aggregate. For example, at 0.4% of 
HRWRA, MN1 mixture exhibited 36% shorter efflux time compared with that of MC1 
mixture. Moreover, the spread flow for MN1 mixture was higher than that of MC1 
mixture by about 31% at the same dosage of HRWRA. In fact, the water demand of 
grout mixtures made with crushed fine aggregate is higher than that of grout mixtures 
made with natural sand. This can be due to the following reasons: First, the shape of the 
crushed fine aggregate is angular with rougher surfaces compared with natural fine 
aggregate, which are rounder with smoother surfaces [21-22]. Second, natural sand 
contains low content of organic contaminant and silt in comparison with crushed fine 
aggregate. This is confirmed through particle size distribution of the used fine 
aggregates. As shown in Figure (1), around 13% particles were passed through 75 m 
sieve in the case of crushed aggregate, while it was only 6% in the case of natural 
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aggregate. Third, the absorption rate of the crushed aggregate was higher than that of 
natural sand by two-thirds. Due to the above mentioned reasons, grout mixtures made 
with crushed fine aggregate displayed lower flowability than the corresponding grout 
mixtures with natural sand [21].  

As shown in Table (4), the spread flow of the grout mixtures depends on the 
HRWRA dosage. Therefore, the effect of the HRWRA on the spread flow was analyzed 
graphically. All measured relative slump values (Rp) were plotted versus the respective 
HRWRA dosage and a linear relation was computed for each mixture through linear 
regression as per the following equation (3): 

ሺ%ሻ	ܣܴܹܴܪ ൌ ܴ	ܪܵ               (3)ܪ

Where Hp is the intersection of this linear function with the ordinates axis at Rp = 
0, which is considered as the minimum HRWRA dosage to disperse the solid particles 
[23], SHp is the deformation coefficient, which indicates the required HRWRA dosage 
to increase the unit dispersing effect. The Hp values for MN1 and MC2 mixtures were 
less than zero. This hints that all tested grout mixtures with a (fa/c) = 0.5 can initiate 
flow behavior without the need for HRWRA addition. However, using HRWRA is still 
needed to achieve the targeted flowability for effective TSC production. Moreover, the 
fine aggregate type has a significant effect on the grout spread flow. As shown in 
Figures (2) and (3), MC2 mixture required a higher HRWRA dosage to disperse the 
powder particles (Hp = 0.0457) than that of the MN2 mixture (Hp = 0.0414).  

 
Figure 2: Relative slump flow based on the spread flow test as a function of HRWRA 

dosage for grout mixtures made with natural sand. 
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Figure 3: Relative slump flow based on the spread flow test as a function of HRWRA 

dosage for grout mixtures made with crushed fine aggregate. 

Based on the flowability results discussed above, MN2 mixture made with 
addition of 0.4% HRWRA, MC1 mixture made with addition of 0.4% HRWRA and 
MC2 mixture made with addition of 0.8% HRWRA are considered as successful grout 
mixtures to produce TSC since these mixtures approximately meet the recommended 
efflux time according to ACI304.1 [1]. 

Grout Bleeding 
Bleeding occurs due to the settlement of heavier solid particles suspended in free 

water under their own weight [24]. As shown in Figures (4-6), fine aggregate type has a 
significant effect on the grout bleeding. It can be observed that grout mixtures made 
with crushed fine aggregate achieved better stability than those made with natural sand. 
For example, at 0%, 0.4% and 0.8% HRWRA, MN2 mixture exhibited 44.4%, 37.5% 
and 150% higher bleeding, respectively, compared with MC2 mixture.  

 
Figure 4: Influence of fine aggregate type on bleeding of TSC grouts conducted with 

different HRWRA dosages (fa/c = 0.5). 
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Figure 5: Influence of fine aggregate type on bleeding of TSC grouts conducted with 

different HRWRA dosages (fa/c = 1.0). 

 

Figure 6: Influence of fine aggregate type on bleeding of TSC grouts conducted with 
different HRWRA dosages (fa/c = 1.5). 
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Figure 7: Influence of fine aggregate type on compressive strength of TSC grouts 

conducted with different HRWRA dosages (fa/c = 0.5). 

For example, at 0.8% HRWRA, MC3 mixture exhibited 22% higher compressive 
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to better bond characteristics and strong interlock between particles [26]. On the other 
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Figure 8: Influence of fine aggregate type on compressive strength of TSC grouts 

conducted with different HRWRA dosages (fa/c = 1.0). 
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 Grout mixtures made with fa/c = 0.5 and 1.0 can achieve the target flowability 
for TSC grouts specified in TSC standards, while those made with fa/c = 1.5 
were too thick to use in TSC production despite the use of HRWRA 
admixtures. 

 Grout mixture made with crushed fine aggregate, fa/c = 1.0 and 0.8% HRWRA 
was the best for successful TSC grout since it exhibited acceptable flowability, 
excellent bleeding resistance and high compressive strength. 
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