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 الملخص
لعینات ذات النسب الحجمیة الطورین  ىد الانفعالى للصلب ذصلاتم دراسة سلوكیات الإ

 التعبیر" تطبیققابلیة  منتم التحقق  .المارتنسیت باستخدام معادلات تجریبیھطور من المختلفة 
أثناء التشكیل الحقیقین والانفعال  جھادالابین ى العلاقة نصف منحلو (Log-method) "ىاللوغاریتم

 "ھولومون"تم تحلیل بیانات اختبار الشد بواسطة معادلة وقد  الطورین. واللدن للصلب ذ
(Hollomon) الطورین وذللصلب ه المعادلة لمرحلة التشوه اللدن ذعدم فعالیة ھأظھرت النتائج و.  

كمؤشر أداء للمنحنیات التي تم  (RMSRP) ة"جذر متوسط التربیع للنسبة المتبقی"ستخدم أٌ 
التي تم الحصول التعبیر اللوغاریتمى قیم معاملات  تتوافق .الحصول علیھا بواسطة صیغ الانحدار

 .علیھا بواسطة صیغ الانحدار بشكل جید مع االنتائج المعملیة
جد أن ھناك زیادة ملحوظة على قیم الانفعال وٌ  "التعبیر اللوغاریتمى"عند تطبیق معادلة 

 في حینعند زیادة النسب الحجمیة لطور المارتنسیت.   ൫݊௨௅൯قالحقیقي في بدایة نقطة التعنّ 
زداد ت ൫݊௨ு൯ قالتعنّ  بدایة نقطةالإنفعال الحقیقي عند  م، وجد أن قی"ھولومون"استخدام معادلة 

 .لمارتینسیتلطور ازیادة النسب الحجمیة بسیطة مع  نسبةب

ABSTRACT 
The strain hardening behaviors of dual phase steel with different volume fraction 

were studied using empirical models. The applicability of Log-method in describing the 
true stress-true plastic strain of dual phase steels was investigated. The tensile test data 
were analyzed by Hollomon equation and the results showed that the equation was not 
applicable for total plastic deformation stage. 

The root-mean-square of residual percentage (RMSRP) was calculated for the 
curves obtained by regression formulae. The values of the Log-method parameters 
obtained by regression formulae were in good agreement with the experimental data.  

It was found that increasing the volume fraction of martensite has a noticeable 
effect on the value of true strain at necking instability ൫݊௨௅൯, when Log-method model 
is used. On the other hand, by using Hollomon model, the value of true strain at necking 
instability ൫݊௨ு൯ was moderately increased by increasing the volume fraction of 
martensite. 

KEYWORDS: Constitutive Equations; Tensile Strength; Strain-Hardening; Dual Phase 
Steels; Plastic Deformation; Necking Instability.  

INTRODUCTION 
The engineering tension test is excessively used to extend basic design 

information on the strength of materials and as an acceptable test to specify of materials. 
In order to make the required design and safety analysis of the structure, the exact 
mechanical properties of metals are required. To apply these mechanical properties data 
to the analysis, designers need accurate analytical expressions to represent their data for 
the test conditions of interest. 
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The increasing interest in mathematical modelling of mechanical and 
metallurgical deformation processes requires that an accurate representative expression 
for the stress-strain behavior of materials to be available. 

Dual-phase (DP) steels are often composed of a high-strength phase, such as 
martensite or bainite, enclosed within a softer matrix, ferrite. Analytical equations based 
on various constitutive equations are routinely used to investigate the strain hardening 
behavior of dual phase steel. The Hollomon analysis [1], the Ludiwik equation [2], and 
the Swift equation [3] are the most prevalent analyses. The true stress-true plastic strain 
curves of dual phase steels typically cannot be characterized by a simple parabolic 
function across a homogeneous strain range, according to analyses employing various 
analytical methods, and dual phase steels deform principally in two or three independent 
stages [4-10]. 

There is a simple relationship between the maximum uniform strain and the strain 
hardening exponent for plastic materials that display a single stage of strain hardening, 
which may be easily, determined using the Considère instability criterion [11] and the 
Hollomon equation. However, these correlations are fallacious for polymeric materials 
that display multiple stages of strain hardening, such as dual phase steels. Several 
attempts have been made to link the strength and ductility of dual phase steels to their 
strain hardening behavior [4, 11-14]. 

The strain hardening which takes place during uniform plastic deformation can be 
expressed by power law relationships, often referred to as Hollomon's equation [1]: 

ߪ ൌ ௣൯ߝ൫	ܭ
௡

              (1) 

Where ߪ is the true stress, K is the strength coefficient, ߝ௣ is the true plastic strain and ݊ 
is the work hardening exponent.  

The work-hardening exponent and the work-hardening coefficient are both 
determined from the logarithm of the true stress versus the logarithm of the true plastic 
strain in the region of uniform elongation. If the Hollomon equation is satisfied by the 
experimental data, a linear regression line can be determined and the parameters ܭ	ܽ݊݀ 
݊	are easily estimated. The work hardening exponent measures the ability of a metal to 
work hardens. Larger magnitudes indicate larger degrees of work hardening. The 
magnitudes of K and n depend on material type and material condition. The strain-
hardening exponent value is less than unity. For metals it is usually varies between 0.1 
and 0.5, however, perfectly elastic plastic-solids have a strain-hardening exponent of 
zero [15-16]. 

The work hardening exponent (n) is a good measure of the material's work 
hardenability. The pace at which the material work hardens is proportional to the value 
of the work hardening exponent. For procedures involving plastic deformation, a 
material with a high strain-hardening exponent is preferred. The materials' high strain 
hardening value allows them to be deformed before becoming unstable, and they may 
be stretched further before necking occurs, allowing a component to be created with less 
localized thinning [16]. 

In ductile material, the stable plastic flow will continue until the true stress ሺߪሻ 
exceeds the rate at which the material is able to work harden. The necking onset takes 
place when the internal force reaches a maximum value. The Considère Criterion asserts 

that the work-hardening coefficient ቀௗఙ
ௗఌ
ቁ drops below the flow stress (σ) value at a 

certain plastic strain rate ሺߝሶሻ	 at the commencement of necking [11-14]. Instability 
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strain, also known as necking strain, is defined as the intersection of the curve of work 
hardening rate versus the curve of true strain and the curve of true stress versus true 
strain.  The work-hardening at strain rate ሺߝሶሻ	 can be expressed as: 

ௗఙ

ௗఌ
ቚ
ఌሶ
ൌ  (2)              ߪ

By differentiating equation (1) and substituting in equation (2), the following relation is 
obtained: 

݊ ൌ  ௨ு               (3)ߝ

Where ߝ௨ಹ is the true uniform strain at necking instability (the limit of uniform strain). 
The physical meaning of hardening exponent is the true strain at the onset of necking.  

For	procedures	 involving	plastic	deformation,	 a	material	with	 a	high	work‐
hardening	 exponent	 value	 is	 desired.	 Its	 significance	 is	 that	 it	 is	 a	measure	 of	 a	
material's	 stretch	 formability.	 The	higher	 the	n	 value,	 the	more	 the	material	 can	
deform	before	becoming	unstable,	and	the	longer	it	can	be	stretched	until	necking	
occurs	ሾ17ሿ.	

The Log-method model can be considered as modified Hollomon model. This 
kind of modification was done in order to obtain a better description for the stress-strain 
curve at high as well as at low strains. The Log-method has been offered as a refinement 
of Hollomon's equation to express the genuine stress-true strain relationship [18]. This 
type of adjustment was made in order to provide a more accurate depiction of the stress-
strain curve at both high and low strain. The modification leads to the formula: 

ߪ ൌ ሺ஻ା஼ߝܣ ୪୬ሺఌ ఌ೚⁄ ሻሻ              (4) 

Where ߝ ,ߪ and ߝ௢ are true stress, true plastic strain and yield strain respectively. The 
characteristics of this model is that the parameters A, C, ሺܤ െ ܥ lnሺߝ௢ሻሻ are not a 
function of yield strain ሺߝ௢ሻ [18]. The right hand side term is identical to Hollomon’s 
model where the constant ሺܤ െ ܥ lnሺߝ௢ሻሻ is equivalent to the n values on Hollomon. 
The next term, ߝሺ஼ ୪୬ሺఌሻሻ, was employed to correct the deviation of Hollomon’s equation 
from real behavior at low strain. 

The parameters A, B and C are material constants; the parameter A is similar to 
parameter K of Hollomon’s equation and has the meaning strength factor (numerically, 
equal to the stress extrapolated to unit strain), parameter B is the mean differential work 
hardening exponent from yield to unit strain (Equation 4): 

ௗ ୪୬ఙ

ௗ ୪୬ ఌ

തതതതതത
ቚ
ఌୀఌ೚

ఌୀଵ
ൌ

ሺ஻ା஼ ୪୬ ఌ೚ሻାሺ஻ି஼ ୪୬ ఌ೚ሻ

ଶ
ൌ  (5)          ܤ

It is numerically equal to the differential work-hardening exponent at ߝ ൌ  .௢଴.ହߝ
Parameter C expresses the deviation from Hollomon’s model 

lim஼→଴ ߪ ൌ 	ܣ lim஼→଴ ߝ
ሺ஻ା஼ ୪୬ሺఌ ఌ೚⁄ ሻሻ ൌ  ஻          (6)ߝܣ

In the logarithmic form, this model is a second order polynomial while Hollomon's 
model is a first order polynomial. Differentiating equation (4) yields:  

ln ߪ ൌ lnܣ ൅	ሺܤ ൅ ܥ lnሺߝ ⁄௢ߝ ሻሻ ln   ߝ

ௗ ୪୬ఙ

ௗ ୪୬ ఌ
ൌ ܤ ൅ ܥ lnሺߝଶ ⁄௢ߝ ሻ  
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ܴܲܵܯܴ ൌ
ඨ∑ ቀ

഑ೝ೐೒ೝష഑೐ೣ
഑೐ೣ

௫ଵ଴଴ቁ഑೐ೣ

మ

ே
           (9) 

Where ߪ௘௫ is the experimentally measured true stress; ߪ௥௘௚௥ is the true stress 
calculated by regression formula; and N is the number of experimental points of each 
true stress-true plastic strain curve. 

RESULTS AND DISCUSSION 
The Hollomon expression, which describes the work hardening behavior of 

martensite, was compared with Log-method expression for different volume fraction of 
martensite phase on dual phase steel. The predicted true stress-true plastic strain values 
for each model were compared with experimental data. 

Figure (3) shows the experimental true stress-true strain curves for dual phase 
steel with various martensite percentages (broken line). Theoretical curves (solid lines) 
derived using Hollomon's equation are placed on the same illustration. The 
experimental and theoretical curves representing each volume fraction of martensite 
intersect at two points dividing the curves to three portions. The predicted curves pass 
much above the observed values at relatively modest stresses. The experimental points 
significantly exceed the values anticipated by Hollomon's model at intermediate strain 
settings. Theoretical curves once again exceed experimental curves in the high-strain 
zone. The enormous number of movable dislocations formed in ferrite (the continuous 
phase) next to the martensite grains by the austenite-martensite transformation stresses 
during quenching result in extremely low experimental true stress values at very low 
strains. These stresses are compressive in the radial direction and tensile in the 
circumferential direction. They exceed the yield stress in the ferrite layer adjacent to the 
martensite particles. During tensile loading, ferrite yields first in the ferrite layer 
adjacent to the equator of the martensite grains, as assessed with / respect to the tensile 
axis, at very low stress levels. This makes the experimental curves pass much lower 
than the theoretical ones at the onset of plastic deformation and low strain values. 
Because martensite is still elastically deforming at this stage, the work-hardening rate is 
high, increasing as the volume fraction of martensite increases. As a result, the 
experimental curves intersect and surpass the best-fitting Hollomon's lines. After a 
certain amount of strain has been accumulated, martensite begins to give. This amount 
of strain diminishes when the carbon content of the martensite (hardness of the 
martensite) drops and the volume fraction of the martensite increases [24-26]. Both 
factors rise as the temperature of the intercritical treatment rises. When martensite 
yields, the entire composite deforms together, and the work hardening features of the 
experimental curves change. The work hardening rate is abruptly reduced, resulting in a 
jump-wise fall in Hollomon's work-hardening exponent [27]. Because Hollomon's 
model only has one constant exponent, it averages the high value experienced when 
martensite deformed elastically early in its deformation and the low value representing 
both ferrite and martensite plastic flow. As a result, the two curves will cross again, 
with the experimental curves passing beneath the calculated one. The difference 
between the experimental and theoretically derived curves will grow as the strain 
increases. This will also be the result of raising the martensite volume fraction. 
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