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 .الملخص
القدرة على إنتاج وصلات  FSWلماضیین، أظھر اللحام الاحتكاكي العجائني خلال العقدین ا

ذات مقاومة عالیة خصوصا للمواد التي یتعذر لحامھا بواسطة عملیات اللحام التقلیدیة. لذلك، فإن 
تحسین جودة الوصلات الملحومة  بتحدید أفضل متغیرات لھذه العملیة لایزال موضوع بحث مھم. 

یؤدي التحكم الفعال في الدورة الحراریة لعملیة اللحام ھذه ومن خلال المتغیرات في ضوء ذلك، قد 
التشغیلیة والشكلیة إلى تجنب العیوب التي قد تحدث في الوصلة. العدید من الدراسات أجریت 
باعتبار أشكال مختلفة لرأس أداة اللحام وذلك لتحسین الخواص المیكانیكیة للوصلة الملحومة، غیر 

ره وبشكلھ المضلع على الخصائص الحراریة للقطعة الملحومة لم یحظى إلا بقدر بسیط من أن تأثی
الإھتمام. إلى جانب ذلك، أبدى العمل التجریبي في كثیر من الأحیان أنھ مكلف ویستغرق وقتاً 
طویلاَ خاصة عند دراسة تأثیر المتغیرات المتعلقة بشكل أداة اللحام. تركز ھذه الدراسة على 

في محاكاة  CFDیف التكاملي للمنھج التحلیلي وكذلك أدوات دینامیكیات الموائع الحسابیة التوظ
التولید الحراري والحقل الحراري المصاحب لعملیة اللحام وذلك عند استخدام رؤوس مضلعة 

ثلاثي الابعاد یعتمد على كل من الشبكة الدینامیكیة  CFDالشكل. تم استخدام نموذج عددي معدل 
ة المنزلقة وذلك للتحقق من تأثیر نطاق واسع من المتغیرات التشغیلیة والشكلیة على التوزیع والشبك

ً تم تطویر مجموعة من الصیغ  الحراري ودرجة حرارة الذروة في الملحومات السمیكة. أیضا
التحلیلیة لحساب كمیة التولید الحراري لأي تغییر في شكل رأس أداة اللحام. إستطاع النموذج 

سن تحدید التوزیع المكاني والزمني لدرجة الحرارة في جمیع عملیات اللحام وكذلك حساب المح
كمیة المعدن السائل المتكونة عندما تتجاوز درجة حرارة المادة درجة حرارة تصلبھا. علاوة على 
ذلك، أستخدمت النتائج العددیة المتحصل علیھا في تطویر نموذج شبھ تجریبي لحساب درجة 

 ذروة. حرارة ال

ABSTRACT 
In the last two decades, Friction Stir Welding (FSW) has shown a capability to 

produce high strength joints particularly for the materials that cannot be welded by the 
conventional welding processes. Hence, optimizing the FSW process parameters to 
improve the quality of welded joint is still a subject of active research. In view of that, 
the efficient control of the welding thermal cycle through the geometrical and 
operational parameters may lead to produce sound weldments where defects can be 
avoided. Various studies have been carried out considering different tool pin profiles to 
improve the mechanical strength of welded joint, but the influences of the polygonal pin 
profiles on the thermal characterizations have been rarely reported in details. Besides, 
the experimental work has often showed that it is cost and time consuming particularly 
when the effect of geometrical variables is investigated. The present work focuses on 
the integral employment of analytical approaches and Computational Fluid Dynamics 
(CFD) tool to simulate the heat generation and the thermal field associated to the FSW 
when using tool with polygonal pins. A three-dimensional CFD model considering both 
dynamic mesh and sliding mesh techniques has been used to investigate the effect of a 
wide range of geometrical and operational parameters on the temperature distribution 
and peak temperature within thick FS welded workpieces. A set of novel analytical 
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formulas have been developed to calculate the amount of heat generation corresponding 
to the pin shape. The improved numerical model has captured the temporal and spatial 
temperature distribution throughout the weldments and succeeded to monitor the liquid 
fraction when the material temperature exceeding the solidus temperature. Moreover, 
the acquired numerical results have then been used to develop a novel semi-empirical 
prediction model for the peak temperature. 

KEYWORDS: Friction Stir Welding (FSW); Polygonal Pin; Analytical Approaches; 
Computational Fluid Dynamics (CFD); Dynamic Mesh; Liquid 
Fraction. 

INTRODUCTION 
Although, friction stir welding is relatively new process compared to the 

conventional welding processes it has experienced a rapid utilization in a wide variety 
of industries such as aerospace, automotive and naval applications [1]. This welding 
process has helped to achieve high quality welded joints which overcomes many of the 
problems associated with traditional joining techniques. The welding temperature in 
FSW does not advantageously exceed the melting point, filler metals and shielding 
gases are not required. Furthermore, it is an effective alternative to weld dissimilar 
materials. In FSW process a non-consumable rotary tool consisting of shoulder and a 
pin is brought in between the adjacent plates needed to be welded. This stage is called 
plunging, where the tool penetrates gradually in the workpiece due to the axial load 
applied by the machine. Then, dwelling stage in which the tool keeps rotating in the 
same position where the heat that is generated due to frictional activities and plastic 
deformation leads to increase the temperature of the surfaces being welded in the near-
tool region and makes them soft. After that the tool is forced to move along the joint 
line in the welding stage with high mechanical pressure that melds and joins both 
materials together [2]. 

It is well established in friction stir welding those parameters such as rotational 
speed, translational speed, and the tool geometry control the character of the weld. 
These parameters determine the amount of energy input to the weld and the rate of heat 
generation at the tool/material interface. Hence, peak joint temperature and temperature 
profile in the region near the joint can have a significant impact on the plastic 
deformation zone and heat affected zones, as well as the joint properties. The tool 
geometry is determined by geometrical aspects related to dimensions and shapes of both 
the pin and the shoulder. The pin shape is no less important than the shoulder where 
when it comes to welding of thin plates, the shoulder surface has the major part in 
generation of heat by friction whereas in thicker plates; the pin role becomes more 
efficient at the same time [3]. Therefore, proper pin design can lead to an effective FSW 
process which also means broadening the process’s applicability. Although, various 
studies have been carried out considering different tool pin profiles to improve the 
mechanical strength of welded joint, but the influences of the pin shape on the thermal 
aspects have been rarely reported [4,5]. Regardless of the features on the pin side face, 
circular sided pin is used to some extent. However, polygonal pin can enhance the 
mechanical strength of the joint which might be attributed to the change in the thermal 
performance that can impact the grain size and the final weld microstructure [6]. In the 
following section a review of important research works carried out regarding using tool 
with polygonal pins. 
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Friction stir welding using tool with polygonal pins  
Fujii et al. [7] published a research study in which 5mm thick sheets of 

Aluminium were friction stir welded to investigate the effect of the tool shape on the 
mechanical properties and the microstructure. Additionally, two welding tools with 
threaded and non-threaded cylindrical pins were used as well as one more with 
triangular pin profile. This study has revealed that for Aluminium alloys that have a 
relatively high resistance of deformation, the triangular prism pin has given the best 
results particularly at high rotational speeds. However, a limited pin shapes have been 
included in the study and no detailed information regarding the thermal behavior within 
the workpiece has been presented. Elangovan et al. [8-10] conducted a series of 
experimental studies to comprehend the effects of operational and geometrical 
parameters on friction stir welded zone formation. To this end, authors employed 
different rotational speeds, axial forces, shoulder diameters and five pin profiles 
including triangle and square shapes in joining of two Aluminium plates with a 
thickness of 6mm. In all studies, the results have shown that the optimum mechanical 
properties and free defect welds have been produced by using the tool with a square pin. 
The same finding has been achieved when Gharaibeh et al. [11] carried out similar 
investigation by considering triangular, square and hexagonal pins. Irrespective of the 
achievements, more comprehensive analysis could be conducted using a wider range of 
process geometrical and operational parameters particularly on the thermal impacts that 
have a significant role in the zone formation. Biswas et al. [12] carried out a research 
work in which 6mm of a commercial grade Aluminium was friction stir welded in order 
to experimentally detect the effects of the pin profile, rotational and translational speed 
on the mechanical properties and microstructural features of the welded joints. Five 
various pin profiles including the hexagonal profile have been considered. Vijay et al. 
[13] have experimentally investigated the effects of the change in polygonal pin shape 
on microstructure and tensile strength while friction stir welding of 6mm thickness of 
ceramic matrix composites. In view of the number of pin side faces, polygonal pins with 
4, 6 and 8 faces were employed. The study concluded that the tensile strength and the 
microstructure of the welded joint are affected by the change in the polygonal pin 
profile. In order to develop a mathematical model predicting the ultimate tensile 
strength, Gopalakrishnan [14] has only considered square and hexagonal tool pins with 
different operational conditions. In doing so, friction stir welds were made for plates of 
square butt joint. The model revealed that the tool pin profile and the welding speed 
recorded the highest effects on the tensile strength. Further experimental studies were 
carried out by Palanivel et al. [15] Vijayan et al. [16] to examine how the pin profiles in 
FSW of dissimilar Aluminium alloys affect the tensile properties of welds along with 
other process parameters. Mehta et al. [5] carried out an investigation on the adhesion of 
plasticized material on pin surface. Because of the very high values of stresses that are 
achieved when using the polygonal pins, the authors presumed various polygonal pins 
(triangle, square, pentagon, hexagon, and cylindrical) and welding parameters in the 
study to analyze the extent of undesirable adhesion which would lead to lose the pin 
functionality. The results showed that the pins having less than six sides recorded the 
optimum reaction to the adhesion. The effects of pin profiles on the superplastic 
behaviour have also been investigated by Pate et al. [17] who used square, pentagon and 
hexagon pins. Recently, Mugada analyzed the material flow experimentally using a 
marker insert technique during FSW with different polygonal pins. [18] 

For difficulties of estimating of process thermal features and to overcome the 
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problem of the high cost and time consuming of the experimental investigations related 
to the tool geometry, researchers have used both numerical and analytical approaches as 
alternatives. Accordingly, Finite Element Method (FEM) has been used by Buffa et al. 
[19] where tapered and cylindrical pins used to study the influence of the tool angle on 
the zones of welded joint. Jaimin and Patil [20] and Marzbanrad et al. [21] have also 
considered FEM to investigate the mechanical properties and thermal analysis. Very 
limited types of polygonal pins were employed among different pin profiles used.  

As a powerful modelling tool, CFD based thermal and material flow studies [22-
39] have been published. Noticeably, limited studies have investigated the effect of 
polygonal pin profile on the thermal field where detailed information about the spatial 
and transient thermal features was rarely reported. 

Gadakh et al. [40] proposed analytical models to estimate the frictional heat 
generation for tools with different pin shapes including triangular, square, pentagon and 
hexagon. However, this study could be expanded by covering more polygonal pins. 

Based on the above presented literature review, it can be summarized that the FSW 
tool pin designing is still a field of research as more possibilities of polygonal pin 
profiles can be considered. The published literature is also severely limited in terms of 
the thermal field analysis within the workpiece particularly the thicker ones.  In the 
view of modeling, it is decisively needed to estimate the heat generation amount. From 
another point of view, there is a lack in the relationships for the process thermal aspects 
that include both the geometrical and operational parameters. Therefore, the present 
work focusses on the thermal field diagnostics of FSW using tools with different 
polygonal pins where CFD tools with advanced modelling techniques are suggested to 
be used for analysis of the thermal field. To  accomplish the modelling process, a 
customised analytical approach will be demonstrated to determine the value of heat 
generation for all proposed tools with polygonal pins. Furthermore, detailed numerical 
investigations will be carried out for analyzing the effects of a wide range of geometric 
and operational parameters on the thermal field within the workpiece. Lastly, based on 
the investigation conducted, a semi-empirical prediction model for the peak temperature 
has been developed. 

CFD MODELLING OF FRICTION STIR WELDING 
The current numerical model is an improved version of the model that was 

developed by Hamza et al [41-42] where, a new methodology proposed to avoid the 
unnecessary assumptions and getting more realistic model as well as enhancing the 
model capability in terms of computation time. For this purpose, solidification/melting 
model and special setting for dynamic mesh have been considered. ANSYS Fluent 17.0 
has been used in the development of the current numerical model, which is three 
dimensional, transient and based on a very limited fluid region. The next section 
provides detailed information regarding the CFD setup that has been used in the present 
study. 

Model regions and geometry 
Using the Design Modeller facility in ANSYS 17.0, the geometric details of the 

model have been created. As it can be seen in Figure (1), the current numerical model 
has two main regions; the first one represents the thermomechanical affected zone 
(TMAZ) around the tool. This zone is treated as a fluid region which has a conical 
shape where, its dimensions are estimated based on design variables “x1” and “x2” as 
displayed in Figure (2). According to Kang et al. [37] and Hamza et al [41-42], the 
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Solver Execution 
The material flow in FSW is governed by mass and momentum conservation 

equations, whereas to describe the heat transfer process, energy conservation equation is 
used. In these equations the mathematical statements of the conservation laws of 
physics are represented. Regarding the physical models, in the vicinity of the welding 
tool, and due to the resultant heat generation from the rotational speed of the tool, the 
liquid material behaves as non-Newtonian, viscoplastic, laminar and incompressible 
fluid flow [39,46]. Therefore, viscus laminar model that is available in Fluent was used 
in this study with reasonable accuracy. Besides that, as far as the effects of thermal 
changes during the process are concerned it is worth mentioning that in some real cases 
of FSW, melting temperature could be reached if the welding parameters have not been 
carefully controlled which in role causes a high heat input. That is why 
solidification/melting model was also proposed to be used among the other models that 
are available in the commercial CFD package. Fluent is equipped with solidification / 
melting model which can solve the phase change that is likely to happen whether at 
constant temperature or over temperature range [47]. A detailed information about 
theory and applications of solidification/melting mode are provided in different related 
titles and literatures [44,47,48]. 

Aluminium alloy (AA6061) was used in this study where its chemical 
composition, the temperature dependent thermophysical properties such as the thermal 
conductivity, specific heat and material constants heat has been considered [39]. 
Basically, the fluid medium in (TMAZ) was defined as liquid aluminium with a density 
of 2700 kg/m3. Remarkably, the volume of fluid zone in the computation domain is 
small which is one of the current model’s advantages as it minimises the inaccurate 
values of temperature distribution [30,37]. Moreover, as the constant viscosity would 
affect the results, different values of viscosity are considered according to the 
approximation of the viscosity of the plasticised metal proposed by Sheppard and 
Wright [24, 43] in which the ratio of the effective stress and the strain rate is used as 

η ൌ ஢ు
ଷகሶ

                               (1) 

where ߟ is the material viscosity, ܧߪ is the effective stress and ̇ߝ is the strain rate. The 
Zener-Hollomon parameter [24, 37,43] is used to obtain the value of ܧߪ.  

In terms of boundary conditions, the workpiece walls and the translating tool wall 
are the boundary types that have been specified. With a view to simulate the two real 
motions of the tool, it has been specified with rotational and travel speeds of 637rpm 
1.59mm/s, respectively. Those speeds represent practical values which were taken from 
the literature [43] where User Defined Function (UDF) subroutine was prepared to 
apply both of travel and rotational speed of the tool. Thermally, to define the process of 
heat generation, a heat flux was applied to the tool surface after it had been calculated 
by the analytical heat generation equation given as [40] 

ܳ ൌ ଶ

ଷ
ሺܴௌ௛௢௨௟ௗ௘௥ܲ߱ߤߨ	

ଷ ൅ 	3	ܴ௣௥௢௕
ଶ  ௣௥௢௕ሻܪ	                     (2) 

Where, μ is the friction coefficient taken as 0.4 [49], ω is the rotational speed of the 
tool, P is the plunging pressure (applied load) which was kept at 12.7MPa. As the heat 
generation is given by the above equation, 85% of process efficiency was adopted [30] 
and then divided by the total surface area of the tool to give the heat flux. The 
convection heat transfer coefficient from the top and side surfaces of the workpiece is 
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25W/m2 °C, and whereas the bottom surface is supported by a backing plate, the 
coefficient value is considered as 200W/m2 °C [37, 50]. 

Mesh Independence Test 
In order to conduct the independence test for the primary mesh, three different 

meshes were used as shown in Table (1). As the maximum temperature has been 
recorded at a point with a transverse distance of 8mm from the weld centre and a depth 
of 2mm from the top surface of the workpiece, the test results showed that the 
calculated value of maximum temperature approaches to the experimental value as long 
as the mesh is refined. Additionally, the difference is slightly less than 1% between the 
meshes with 350000 and 700000 elements while the difference was around 0.65% 
between the meshes with 700000 elements and 1.4 million elements. Accordingly, in 
terms of reducing the computation cost along with an acceptable accurate predicting; the 
mesh with 700000 elements has been nominated for further analysis. 

Table 1: Mesh Independence Test Results 

No. of mesh 
elements 

Experimental Max. 
Temperature 

Numerical   Max. 
Temperature 

Difference (%) 

350000 835K 
(562 °C) 

808.86K 
 (535.86 °C) 

 

700000 835K 
(562 °C) 

814.09K  
(541.09 °C) 

0.97 

1400000 835K 
(562 °C) 

817.62K 
(544.62 °C) 

0.65 

Time Step Independence Test 
In a view of the solution stability and accuracy, time step independence test has a 

significant role. As earlier mentioned, that both sliding and deforming mesh are 
employed in the current model; hence there is a need to determine the optimum time 
step for both techniques. It is noteworthy that dynamic mesh is predominantly much 
critical and dominant than sliding as it is sensitive to fail at any time step even it was 
advanced in the computation time. That is why; guarantee a successful dynamic mesh 
over the total computation time has the highest priority. Several considerations should 
be taken in account to avoid negative cell volume problem. Consequently, it is obvious 
that conducting the test is complicated whereas different procedures would be 
undertaken to harmonise the time step. To start with, Courant number concept is used 
and fulfilled to ensure that the solution will become stable. In essence, Courant number 
should be less than 1 [51], where the time step that was chosen for achieving the criteria 
is 0.1 second. Secondly, the volume mesh is updated within 0.1 second time step and 
using proper settings that are normally employed for triangular or tetrahedral mesh. 
After circumventing the problem that might happen within the dynamic mesh and by 
considering that 0.1second is the maximum reference step size that must not be 
exceeded, the concern is now about how to evade the effect of the change in the time 
step on the results particularly for the primary mesh. When talking about the primary 
mesh that means the period from the welding process in which the tool is only rotating 
and not translating. In other words, the moments in which the mesh is working without 
deforming and the sliding mesh is playing the key role. Hence, to investigate that effect 
and carrying out the time step independence test; three-time steps of 0.1sec, 
0.066666sec, and 0.0333333sec were suggested under the above estimated maximum 
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with each other, it can be seen that all the terms in the equations are the same except 
those related to the pin radius. Accordingly, a general equation can be expressed as: 

ܳ௧௢௧௔௟ 	ൌ
ଶ

ଷ
.ߨ ߱. ߬௖௢௡௧௔௖௧	ሺܴ௦

ଷ 	൅ .௡ܥ .ଶ݌ܴ	  ሻ           (15)ܪ

Where Cn has different values according to the number of polygon faces. 

Table 3: Heat generation formulas of tools with different polygonal pins 

Pin Profile 
No. of 

Faces 
Equation 

Heptagonal 7 ݈ܳܽݐ݋ݐ ൌ
2
3
.߱.ߨ ߬௖௢௡௧௔௖௧ ሺܴ௦ଷ ൅ .ଶ݌ܴ	2.61477  ሻܪ

Octagonal 8 ݈ܳܽݐ݋ݐ ൌ
2
3
.߱.ߨ ߬௖௢௡௧௔௖௧ ሺܴ௦ଷ ൅ .ଶ݌ܴ	2.7018  ሻܪ

Nonagonal 9 ݈ܳܽݐ݋ݐ ൌ
2
3
.߱.ߨ ߬௖௢௡௧௔௖௧ ሺܴ௦ଷ ൅ .ଶ݌ܴ	2.7632  ሻܪ

Decagon 10 ݈ܳܽݐ݋ݐ ൌ
2
3
.߱.ߨ ߬௖௢௡௧௔௖௧ ሺܴ௦ଷ ൅ .ଶ݌ܴ	2.80756  ሻܪ

Undecagon 11 ݈ܳܽݐ݋ݐ ൌ
2
3
.߱.ߨ ߬௖௢௡௧௔௖௧ ሺܴ௦ଷ ൅ .ଶ݌ܴ	2.8402  ሻܪ

Dodecagon 12 ݈ܳܽݐ݋ݐ ൌ
2
3
.߱.ߨ ߬௖௢௡௧௔௖௧ ሺܴ௦ଷ ൅ .ଶ݌ܴ	2.8658  ሻܪ

13-gon 13 ݈ܳܽݐ݋ݐ ൌ
2
3
.߱.ߨ ߬௖௢௡௧௔௖௧ ሺܴ௦ଷ ൅ .ଶ݌ܴ	2.8856  ሻܪ

14-gon 14 ݈ܳܽݐ݋ݐ ൌ
2
3
.߱.ߨ ߬௖௢௡௧௔௖௧ ሺܴ௦ଷ ൅ .ଶ݌ܴ	2.90122  ሻܪ

15-gon 15 Qtotal ൌ
2
3
π.ω. τୡ୭୬୲ୟୡ୲ ሺRୱଷ ൅ 2.9141	Rpଶ. Hሻ 

25-gon 25 ݈ܳܽݐ݋ݐ ൌ
2
3
.߱.ߨ ߬௖௢௡௧௔௖௧ ሺܴ௦ଷ ൅ .ଶ݌ܴ	2.9684  ሻܪ

30-gon 30 ݈ܳܽݐ݋ݐ ൌ
2
3
.߱.ߨ ߬௖௢௡௧௔௖௧ ሺܴ௦ଷ ൅ .ଶ݌ܴ	2.979  ሻܪ

40-gon 40 ݈ܳܽݐ݋ݐ ൌ
2
3
.߱.ߨ ߬௖௢௡௧௔௖௧ ሺܴ௦ଷ ൅ .ଶ݌ܴ	2.988  ሻܪ

All above derived heat generation equations have been used for the same 
aluminium FSW welding process and conditions in section of CFD modelling. After 
calculating the heat amount from the analytical equations for all proposed cases, they 
were plotted in Figure (12) and compared with the calculated heat generated for the tool 
with cylindrical pin profile. It can be seen that the total heat produced by the tool 
increases as the numbers of polygon faces increase. Total heat generated from a tool 
having 7 side faces has been calculated to be 11878W, which increases to reach 
11987W as the number of faces increases to 25. As the number of faces further increase, 



Journ

the i
is th
cylin
the n
this 

SCO

have
para
face
pin p
in th
whe
defin
temp
num

807
pin 
seem

nal of Engin

increase i
hat the nu
ndrical sh
number o
point, the

Fig

OPE OF N
The cur

e been u
ameters on
es might a
profiles h
he section
ere it was 
ned in th
perature h

mber of fac

For exa
.9K, 808.
profiles, 

ms that th

neering Res

in the tota
umber of f
hape, whi
of faces in
e frictiona

ure 12: H

NUMERI
rrent CFD
used to e
n the therm
affect the 

have been 
n of CFD m

recorded
he section
has mostl
ces.  

Figure 13

ample, th
1K and 8
respectiv

he increas

search (Un

al heat gen
faces has 
ich depict
ncrease, 12
al forces ar

eat genera

ICAL INV
D model w
estimate 
mal field 
maximum
used alon

modelling
d for a the
n of CFD
ly scored 

3: Local m

he maxim
808.27K f
ely. Refe
se in the 

niversity of 

neration f
increased

ts maximu
2010W be
re maxim

ation varia

VESTIG
with the ai
the effec
of FSW p
m temper
ng with th
g. The max
ermal cyc

D modellin
the same

maximum t

mum local
for the ca
rring to t
heat amo

f Tripoli)

from the t
d so much
um heat g
eing the h

mum due to

ations w.r

GATIONS
id of the a
cts of dif
process. In
rature, He
he welding
ximum te
le of 100
ng. As p
e value fo

temperatu

l tempera
ases of He
the heat g

ount along

Issue (32)

tool is ver
h where th
generation
heat amou
o more ex

r.t the num

 
analytical 
fferent g
n order to 
eptagonal,
g paramet
emperature
0 seconds 
lotted in 
or each si

ure at four

ature at p
eptagonal,
generation
g with the

Sep

ry small. 
he pin sha
n. Approa
unt of the 
xposed are

mber of po

heat gene
eometrica
examine 

, Octagon
ters and co
e has been
at the fou
Figure (

ingle poin

r different

point 1 w
, Octagon
n amount
e increase

ptember 202

The reaso
ape appro
aching 12
cylindric

ea of the p

 
olygon face

eration co
al and op
how num

nal, and N
onditions 
n locally m
ur points 
13), the m
nt against

 
t points. 

was record
nal, and N
s in Figu
e in the n

21       57 

on for this
oaches the
2010W as
cal pin. At
pin. 

es. 

orrelations
perational

mber of pin
Nonagonal

described
monitored
that were

maximum
t different

ded to be
Nonagonal
ure (12) it
number of

s 
e 
s 
t 

s 
l 
n 
l 
d 
d 
e 

m 
t 

e 
l 
t 
f 



Journal of Engineering Research (University of Tripoli) Issue (32) September 2021       58 

faces is not that much high to cause an increase in the local temperature, particularly 
when considering the high thermal conductivity of aluminium as well as the plate 
thickness which enhances the heat transfer process. From another point of view, the 
distances between the four locations cause the difference in the temperature values 
where the highest temperature is expected to be close to the shoulder surface. As the 
temperature trend was the same for the three proposed tools and to reduce the number of 
numerical experiments, octagonal pin was nominated for further investigations. 

As this study aims at understanding the effects of a wide range of geometrical and 
operational parameters on the thermal characterisations of FSW, several process 
variables have been taken into consideration. The range of the chosen variables has been 
specified based on the practical values of these parameters and the model capability. As 
presented in Table (4), a set of numerical experiments have been proposed to investigate 
the effects of the selected parameters which are shoulder size, pin size, pin height, 
material thickness, tool rotational speed and axial load. In this set of numerical 
experiments, the effect of each variable has been addressed by four different values as 
shown in the table. To visualise how the change in the considered process variables may 
influence the thermal field, the temperature distribution throughout the workpiece was 
monitored. Moreover, different time instances from the welding cycle (100 sec) were 
selected to show the time dependent change that would occur to the temperature profile 
during the welding process. This information has then been used to develop novel 
statistical prediction model for the peak temperature. 

Table 4: Process parameters and their ranges 

No
. 

Shoulder 
Radius(mm) 

Pin 
Radius(mm) 

Pin 
Height(mm) 

Material 
Thickness 

(mm) 

Rotational 
Speed(rpm) 

Axial load 
(MPa) 

EX.1  13  6  12  12.7  637  12.7 

EX.2  17  6  12  12.7  637  12.7 

EX.3  21  6  12  12.7  637  12.7 

EX.4  25  6  12  12.7  637  12.7 

EX.5  25  3  12  12.7  637  12.7 

EX.6  25  9  12  12.7  637  12.7 

EX.7  25  12  12  12.7  637  12.7 

EX.8  25  6  11  12.7  637  12.7 

EX.9  25  6  10  12.7  637  12.7 

EX.10  25  6  9  12.7  637  12.7 

EX.11  25  6  12  14.7  637  12.7 

EX.12  25  6  12  16.7  637  12.7 

EX.13  24  6  12  18.7  637  12.7 

EX.14  24  6  12  12.7  237  12.7 

EX.15  24  6  12  12.7  437  12.7 

EX.16  24  6  12  12.7  837  12.7 

EX.17  24  6  12  12.7  637  9.7 

EX.18  24  6  12  12.7  637  11.2 

EX.19  24  6  12  12.7  637  14.2 
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analysis presented in this study would be of great value for the people who work in the 
welding field as the prediction model developed for the peak temperature can be used in 
where the welding procedure specifications are of interest. 
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NOMENCLATURE 

V        Tool Translational speed (m/sec) n      Number of Pin Side Faces 

F        Downward Force (N)  ܳ ̇        Activation Energy (kJ/mol)  

P        Contact (Axial) Pressure (Pa)  R        Universal Gas Constant (J/mol. K)  

Q       Heat generated amount (W)  ܿ ݌       Specific Heat (J/kg. K) 

݇	        Thermal Conductivity (W/(m.K)) x1     TMAZ Design Variable (m)  

T       Temperature (K)  x2     TMAZ Design Variable (m)  

Ta      The ambient Temperature (K)  Rs     Shoulder Radius (m)  

݄      Convective Heat Transfer Coefficient  

(W/m2 .K)  

Rp    Pin Radius (m) 

 

Z        The Zener-Hollomon Parameter  H      Pin Height (m)  

  Material Constant (1/sec)       ̇	ܣ

C     Courant number  

GREEK SYMBOLS 

ω         Tool Rotational Speed (r.p.m)  ߪ ܧ         The effective stress (Pa)  

β         Liquid Fraction  ߙ        Material Constant (MPa-1)  

ߝ  Contact Shear Stress (Pa)    	ݐ	ܿ	ܽ	ݐ	݊	݋	ܿ	߬ ̇             Strain Rate  

Frictional Shear Stress (Pa)  η       The fluid Viscosity (Pa. sec)    	݊	݋	݅	ݐ	ܿ	݅	ݎ	݂	߬

μ             Friction Coefficient  ρ           Material Density (kg/m3) 

ߨ  The Stefan-Boltzmann Constant (W/m2⋅K4)					ߝ            Pi
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