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ABSTRACT
A super-convergent finite beam element formulation is developed for the tor-
sional-warping dynamic coupled analysis of thin-walled open doubly symmetric beams
under various harmonic torsional and warping moments. The dynamic equations of mo-
tion and related boundary conditions for torsional warping coupled response were derived
in previous study. The finite element formulation is based on a generalized Vlasov-Timo-
shenko beam theory, and accounts for shear deformation effects due to non-uniform warp-
ing. It is also capturing the effects of axial constant static forces on the natural torsional
frequencies, quasi-static and steady state dynamic responses. A family of shape functions
is developed based on the exact solution of the coupled equations and are then used to
formulate a beam finite element. The new two-nodded beam element with four degrees
of freedom per element successfully captured the coupled torsional-warping quasi-static
and steady state dynamic responses of open thin-walled beams under various harmonic
torsional and warping moments. It is also used to extract the coupled torsional-warping
natural frequencies and mode shapes from the dynamic analysis of the structural member.
The present beam element is demonstrated to be free from discretization errors occurring
in conventional finite element solutions. The applicability of the finite beam element is
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verified through several numerical examples. The numerical results based on the present
finite element solution are found to be in excellent agreement with those based on exact
and Abaqus finite element solutions available in the literature at a small fraction of the
computational and modelling cost involved.

KEYWORDS: Exact shape functions; Torsional-Warping Coupled Response; Super-
Convergent Finite Element.

INTRODUCTION AND OBJECTIVE

Thin-walled members are commonly used in the design of many structural compo-
nents in aerospace structures, steel building construction, steel bridges, ship and marine
structural frames, truck frames, and so forth. In such applications, thin-walled beams sub-
jected to cyclic harmonic torsional excitations are prone to fatigue failures. Under these
harmonic torsional loads, the total response of a thin-walled beam is a combination of
two components; (a) a transient torsional response which is initiated at the beginning of
the excitation, and (b) a steady state torsional response which is sustained for a longer
time. The transient torsional response attenuates quickly due to damping and is thus of no
importance for fatigue design. In contrast, the sustained steady state component of the
torsional response is of major importance for fatigue design and is the subject of the pre-
sent study. Within this context, the present paper aims at developing an efficient finite
element solution which captures and isolates the steady state torsional-warping coupled
dynamic response of open thin-walled doubly symmetric beams. The present finite beam
element solution is also able to capture the effect of axial constant tensile and compressive
forces on the quasi-static, steady state torsional dynamic responses and torsional eigen-
frequencies and eigen-modes of the system.

LITERATURE REVIEW ON ANALYTICAL SOLUTION

Thin-walled beam theories which capture warping effects include the works of [1],
and [2]. Reference [1] developed a general theory for isotropic thin-walled beams with
open and closed cross-sections which captures the warping effects. Compared to the typ-
ical Saint VVenant torsion theory, the Vlasov theory introduced the rate of change of the
torsional rotation angle as a measure of warping deformation, which leads to an additional
straining action, the bimoment. The Vlasov torsion formulation is based on two funda-
mental kinematic assumptions: (i) the cross section of a member remains undeformed (or
rigid) after deformation, and (ii) the shear strain in the middle surface is neglected. In
other words, Vlasov torsion theory for thin-walled beams considers the warping stiffness
of the beam cross section but neglects the shear deformation effects at the middle surface.
Reference [2] extended the theory of Vlasov to account for the additional through-thick-
ness secondary warping for beams with open and closed cross-sections. In a similar the-
ory, [3] independently developed a theory for isotropic beams with open cross-sections
in which the shear deformation effects are included.

Several publications based on the analytical solutions of the static analysis and free
torsional vibration of open thin-walled beams with doubly symmetric cross-section, con-
sidering the warping deformation of the cross-section and by including/excluding the ax-
ial static effects are investigated by some publications. Among them, [4] investigated the
free torsional vibration of doubly symmetric long thin-walled beams of open section. In
his formulation, the warping effect of the cross-section on the natural frequencies and
normal mode shapes are determined for thin-walled bars with various end conditions.
Based on dynamic stiffness matrix approach, [5] investigated the free torsional vibration
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and buckling of doubly symmetric open thin-walled beams subjected to an axial static
compressive load and resting on continuous elastic foundation. Reference [6] derived the
closed-form solutions for the torsional analysis of thin-walled beams under various twist-
ing moments and boundary conditions. Reference [7] developed a boundary element so-
lution for the general linear elastic non-uniform torsion problem of homogeneous and
composite prismatic bars of arbitrary cross section subjected to various twisting moments.
Reference [8] developed the dynamic stiffness matrix formulation for computing the nat-
ural torsional frequencies of elastically restrained doubly symmetric thin-walled I-beams
resting on Winkler-type continuous elastic foundation. In their formulation, the analytical
solution is developed by including the effects of warping deformation and excluding the
longitudinal inertia and shear deformation effects. Reference [9] presented an improved
thin-walled beam theory considering the transverse shear deformation due to the shearing
force and restrained warping and the coupled effect between these two shear deformations
by introducing Vlasov’s assumption and applying Hellinger- Reissner principle. Refer-
ence [10] developed an analytical method for the torsion of open thin-walled beams with
effect of shear deformation by assuming that the shear stress was constant along the beam
length. Based on postulated stress field, [11] developed a theory for the torsional static
analysis of open steel thin-walled beams of general cross sections which accounted for
shear deformation effects. References [12, 13] presented a beam theory with a non-uni-
form warping including the effects of torsion and shearing forces. Based on Vlasov’s and
Benscoter’s theories, [14] presented an exact solution of non-uniform torsion for thin-
walled elastic beams with asymmetric cross-section. Based on the boundary element
method, [15] developed a non-uniform torsion theory of doubly symmetrical arbitrary
cross-section including secondary torsional moment deformation effect. Reference [16]
developed an exact closed form solution for the steady state torsional dynamic response
of open thin-walled beams of doubly symmetric cross-sections subjected to various har-
monic torsional moments. Their formulation was based on generalized Timoshenko-
Vlasov beam theory in which the transverse shear deformation induced by non-uniform
warping is incorporated. Reference [17] developed a first-order torsion theory based on
Vlasov theory for restrained torsion of open thin-walled beams. The theory captured the
warping deformation and restrained shear deformation of the cross-section. Reference
[18] presented the static and dynamic analyses of the geometrically linear or nonlinear,
elastic or elastic-plastic non-uniform torsion problems of bars of constant or variable ar-
bitrary cross section subjected to arbitrarily distributed or concentrated twisting and warp-
ing moments along the bar axis. Based on the classical Vlasov's theory, [19] developed a
theory for torsion of thin-walled beams with influence of shear deformation for open
cross-sections with single and double axes of symmetry and under various torsional loads.
Based on Vlasov beam theory, [20] formulated an analytical solution for the dynamic
response analysis of doubly symmetric thin-walled 1-beams under harmonic flexural and
torsional loadings. Their solution considers the effect of warping deformation of the
cross-section. From Saint-Venant and non-uniform torsional deformations, [21] investi-
gated the effect of constant thermal gradient on the torsional natural frequencies of open
thin-walled pre-stressed beams. According to Vlasov beam theory, [22] derived the
closed form solutions for the coupled flexural-torsional dynamic response of thin-walled
beams with mono-symmetric cross-sections under harmonic excitations. Their formula-
tion takes into consideration the effects of translational and rotary inertia, warping defor-
mation and flexural-torsional coupling due to cross section mono-symmetry. Reference
[23] derived an analytical solution of torsional vibrations of prismatic thin-walled beams
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for different boundary conditions and various external excitation of torsional moment.
Their solution is based on the Vlasov beam theory where the warping deformation of the
cross section is included. Recently, [24] extended the work of [17] to formulate the exact
closed-form solution by investigating the effect of axial static tensile and compressive
forces on the coupled torsional-warping static and dynamic responses of open doubly
symmetric thin-walled beams subjected to various dynamic torsional excitations. More
recently, [25] developed an exact closed-form solution for the torsional static analysis of
open thin-walled doubly symmetric beams under various torsional and warping moments.
Their formulation based on generalized Vlasov-Timoshenko beam theory which consid-
ers the effect of warping deformation of the cross-section due to shear deformation.

LITERATURE REVIEW ON FINITE ELEMENT FORMULATION

In general, finite element formulations are based on three categories of shape func-
tions: (1) approximate polynomial interpolation functions, (2) shape functions based on
the exact solution of the static equilibrium equations, and (3) shape functions based on
the exact solution of the dynamic equations of motion. Formulations based on the approx-
imate shape functions are most common and are included in the work of [26-33], and
recently [34]. Using the approximate interpolation functions, reference [26] used the fi-
nite element method to study the torsional vibration of long thin-walled beams of open
section resting on the elastic foundation. By utilizing Galerkin-based finite element
method, [27] studied the free torsional vibration of linearly tapered cantilever I-beams.
Reference [28] developed a finite element for the analysis of thin-walled open members
under constant transverse loads. Their formulation was based on assumed linear and cubic
displacement shape functions, in conjunction with an implicit self-starting uncondition-
ally stable integration scheme. Reference [29] developed a finite element for the analysis
of thin-walled beams with arbitrary open cross-sections. Finite element formulations in-
cluding shear deformation effects include the work of [30] who formulated an isopara-
metric element to capture the coupled flexural-torsional free vibration of asymmetric thin-
walled shear deformable beams. References [31,32] study the coupled flexural-torsional
composite members to incorporate the shear deformation effects in a finite element for-
mulation based on one-dimensional shear-deformable finite beam element using linear
and cubic Hermite shape functions. Reference [33] formulated the governing differential
equation for non-uniform torsion of thin-walled beams with open/closed cross-sections
according to the theory of second-order torsional warping. Their formulation captured the
effect of variable axial force and secondary torsion-moment deformation effect on the
beam deformations due to torsional warping. In addition, the transfer matrix method is
derived to develop a finite beam element with two nodes for static and dynamic analyses
of beams. Recently, based on Saint-Venant and non-uniform torsional deformations, [34]
developed a finite element method based on Vlasov theory to analyze the stress state in-
duced due to bimoments of open thin-walled bars.

Finite element solutions based on the exact solution for the static equilibrium equa-
tions such as the work of [35-38], and recently [39]. Their formulations have the ad-
vantage of avoiding locking problems, which could arise in some of the solutions based
on polynomial interpolation functions. In [35], a finite element is developed for the cou-
pled free vibrations analysis of thin-walled beams. The formulation incorporated warping
effects and was based on shape functions derived based on the solution of static equilib-
rium equations. Reference [36] formulated a finite element formulation for the coupled
bending-torsional dynamic behavior of thin-walled beams of asymmetric cross-sections.
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The interpolation functions adopted were based on the homogenous solutions of static
differential equations of equilibrium and were used to derive the stiffness and mass ma-
trices of the beam element in the finite element formulation. Reference [37] developed a
finite beam element formulation used the exact static solution of torsional analysis of
thin-walled beams with open cross-sections based on St. Venant and Vlasov theories.
Based on a generalized Timoshenko-Vlasov thin-walled beam theory, [38] developed a
super-convergent finite beam element solution for the coupled flexural-torsional analysis
of monosymmetric thin-walled open members under general static forces. The two-noded
finite element with four degrees of freedom per node based on shape functions which
exactly satisfy the homogeneous form of the equilibrium static coupled equations is de-
veloped to fully capture the effects of warping stiffness, shear deformation, and estab-
lished the torsional-flexural coupling. Lately, [39] used the exact homogeneous solutions
for torsional rotation and warping deformation functions to formulate an exact finite beam
element solution of torsional-warping coupled static response of open thin-walled doubly
symmetric beams.

Finite-element solutions based on the exact solution of the dynamic equations of
motion include the work of [40- 42]. Based on Vlasov beam theory, [40] formulated a
super-convergent two-noded finite beam element solution for the dynamic response anal-
ysis of doubly symmetric thin-walled I-beams under harmonic flexural and torsional load-
ings. The formulation considers the effect of warping deformation of the cross-section.
In their finite element formulations, a family of exact shape functions for torsional rota-
tion and warping deformation were developed based on the exact homogeneous solutions
of the governing torsional equations. In another publication, [41] developed an exact fi-
nite element formulation for the coupled flexural-torsional dynamic response of open
monosymmetric thin-walled beams. The beam element based on Vlasov beam theory as-
sumptions captures the effects of Saint Venant and warping torsion translational and ro-
tary inertia and the coupling between bending and torsion. Reference [42] formulated a
super-convergent two-nodded finite beam element based on the exact shape functions
which satisfy the exact homogeneous solution of the governing torsional equation to in-
vestigate the quasi-static and dynamic analyses for the torsional vibration of shafts sub-
jected to various harmonic twisting moments.

The finite element formulations based on approximate shape functions involve spa-
tial discretization errors, and thus require fine meshes to converge to the actual solution.
In contrast, the finite element formulations based on exact solutions offer two advantages:
(1) they eliminate discretization errors arising in conventional interpolation schemes and
converge to the solution using a minimal number of degrees of freedom; and (2) they lead
to elements that are free from shear locking. Within this context, the present paper aims
to develop an efficient finite beam element solution for the torsional-warping coupled
dynamic analysis of thin-walled beams with doubly symmetric open sections subjected
to harmonic torsional and warping moments and axial static force. The formulation
sought is based on exact shape functions which exactly satisfy the coupled torsional-
warping field equations and captures shear deformation effects caused by warping. The
present paper differs from [24] as the previous paper achieved the exact closed-form so-
lution of the torsional-warping coupled response of open thin-walled beams subjected to
torsional and warping harmonic moments, while the present paper is an extension of the
previous paper and develops an efficient finite beam element solution that depends on the
exact shape torsional and warping deformation functions which exactly satisfied the so-
lution of the coupled field equations derived in [24].
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MATHEMATICAL MODEL AND GOVERNING EQUATIONS

Consider a linearly elastic, homogeneous, isotropic open thin-walled beam sub-
jected to distributed harmonic torsional and warping moments and axial static force, un-
dergoing coupled torsional-warping linear vibrations. A generalized Timoshenko bend-
ing, and Vlasov torsion beam theories are used to derive the governing differential equa-
tions of motion and an efficient finite beam element solution based on the exact shape
functions is developed. The thin-walled beam is referenced to a right-handed rectangular
coordinates system (X,Y,Z), where the axis Z is the longitudinal axis of the beam,
while X and Y are the principal axes of the cross-section passing through the section cen-
troid C. Figure (1) shows the coordinate systems and geometry of the open thin-walled
cross-section, where L is the length of the beam. The two governing differential coupled
equations of the open thin walled doubly symmetric beam were derived in previous stud-
ies [24] are given as follows:

pATOZéZ(Z, t) - (G] + GDWW - onroz)ez”(z' t) - GDWWIIJI(Z' t) = mz(z' t) (1)
GDyry05(2,t) + plyP(z,t) — EL" (2,) + EDyy (2, t) = —my, (2, 1) (2

m,(z,t)=m, (z)e** ! N\

L my(z t)=m,(z)e™

Figure 1: Open Thin walled doubly symmetric beam subjected to various dynamic torsional
and warping moments

where 6,(z, t) is the torsional rotation of the cross-section, Y (z,t) is a function which
characterizes the magnitude of the warping deformation, w(s) is the warping function of

the open cross-section is defined by: w(s) = fs h(s)ds, in which h(s) is the perpendic-
ular distance from the shear center S, to the tangent to the mid-surface at point p(x, y),
r2 = (Ixx + Iyy) /A is the polar radius of gyration about the shear centre, p is the material
density, E is the modulus of elasticity, G is the shear modulus, J is the St. Venant torsional

constant, and A is the cross-sectional area, I, is the warping constant, Q is the circular

exciting frequency of the applied torsional moments, where A, Ly, Iy, 1y, Dyy =

J, [L,y? x% w? h?]dA. All primes denote derivatives with respect to space coordinate

z while dots denote the derivatives with respect to time. In equations (1,2), P,,is the axial
static force, m,(z,t) is the harmonic distributed torsional moment, m,,(z, t) is the har-
monic distributed warping moments (i.e., bimoments) applied along beam axis (Figure
1).

The above equations are applicable to thin-walled beams having doubly symmetric
open cross-sections and are restricted to the torsional-warping coupled response of open
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section thin-walled beams. In this formulation, the shear deformation effects induced by
warping (i.e., non-uniform torsion) at the middle surface of the cross-section are assumed
non-zero and are characterized by a generalized displacement function multiplied by the
sectorial coordinate (the reader is referred to the previous paper [24] for the basic assump-
tions of the formulation, description of the kinematics and the solution of the problem).

Expressions for Applied Moments and Functions
The open thin-walled beam is assumed to be subjected to the applied harmonic
twisting and warping moments within the member:

m,(z,t),my(z,t) = [M,(2), M, (Z)]emt ()
Under the given harmonic torsional moments and in the absence of damping, the torsional
rotation and warping deformation functions corresponding to the steady-state component
of the dynamic response are assumed to take the form:

0.(2,6),%(z,t) = [6,(2), P (2)]e"™ (4)

in which i = +/—1 is the imaginary constant, 8,(z) and ¥(z) are the amplitude space
functions for torsional rotation, and warping deformation, respectively. Because the pre-
sent formulation is intended to capture only the steady-state dynamic response of the sys-
tem, the torsional rotation and warping deformation functions postulated in equation (4)
disregard the transient component of the dynamic response.

Solution of Torsional-Warping Coupled Equations

From the harmonic expressions in equations (3,4) and by substituting into equations
(1,2), one obtains the coupled torsional-warping dynamic equations:

[(on‘ro2 -G/ = GDWW)DZ - pATOZQ'Z —GDyy,D ] {é(z)} —
—GD,,,D plyQ? = GDyy, + EL,D?L, , (P(2)),,,
mW(Z) 2%1

in which D is the differential operator, i.e., D = d/dzand D? = d? /dz?. The homoge-
neous solution of the coupled torsional-warping equations in (5) was obtained in previous
study [24] as:

{®(D)}2x1 = [Glaxa [E(@)]axa{A}axa (6)
in which,

(P(@Dhxz2 =(0,(2) P(@D)ixas [E(2)]axs = Diag [eF17  eF27 P37 Fa7]yxy, the
unknown integration vector is (A)ixs = (41 Ay Az Ay)ixa, aNd [Gloxs =
1 1 1 1 pAerg+G(]+DWW)ﬁi2) _ ( GDywBi )
Pi Mz M3 Halyy, GDwwhBi ~ \ELBZ+(plyQ?-GDyy) )
It is noted that, all four roots (m; = B; for i = 1,2,3,4) are distinct and are given by

Biz=my, =tV +1, and B34 = m3, = Five +1 , where
o« = [[,DIWQZ [G(] + wa) - roz(on - EA)] - GDWW(G] - onroz)]]
ZEIW[G(/ + wa) - onroz]

, Where p; = —(
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i (plwnz [6U + D) = 12 (Po = EA] = 6Dy (6] = Por? )2
ZEIW[G(/ + wa) - onroz]

1/2
~ pAer02< pl,, 0% — GD,,,, )]

EIW GU + wa) - onro2

Formulation of Exact Finite Element

The proposed finite beam element is developed for the coupled torsional-warping
dynamic response of open thin-walled beams under various harmonic torsional and warp-
ing moments. The proposed two-nodded finite beam element having four degrees of free-
dom per element is developed (Figure 2). A set of exact shape functions that exactly sat-
isfy the homogeneous solution of the coupled field equations in [24] is used to formulate
the exact stiffness and mass matrices and load potential energy vector for the beam ele-
ment.

,,f ¢ 3;,/ N\
le I:,‘ d)z ........... = Ew-— zZ
. Le =!
7 = z=1L,

Figure 2: Two-nodded beam element for torsional-warping coupled response

Expressions of Exact Shape Functions

To relate the torsional rotation 6,(z) and warping deformation ¥ (z) functions to
the nodal torsional and warping deformation, the vector of integration constants {A},,is
expressed in terms of nodal torsional and warping displacements (d,);xs =
(b1 P2 &3 ®4)1x4bY enforcing the conditions 6,(0) = ¢, (0) = ¢,, 6,(L.) = ¢3
and P(L,) = ¢4, Where L, is the beam element length, yielding:

{®(0)}2x1 | [Gl2xa [E(0)]4xa4 _ _ ~
{¢(Le)}2x1}4x1 - [ [G]2x4 [E(Le)]4><4 4X4 {A}4X1 - [S ]4X4{A}4X1 (7)

From equation (7), by substituting into equation (6), one obtains:

{P(2)}2x1 = [E(2) l2xa [5]Z>%4{de}4><1 = [H(2) l2xa {de}axa (8)

in which [H(2) lxa = [H1,j(2) H2;(2) 1554 = [E(2) Ioxa [S]axa is @ matrix of eight
shape functions for torsional rotation and warping deformation for steady state dynamic
response. It is obvious that, equation (8) provided the exact shape functions that exactly
satisfy the homogeneous solution of the torsional-warping steady state dynamic coupled
equations are dependent on the beam length, exciting frequency, and cross-section prop-
erties.

{de}ax1 = {

Energy Expressions in Terms of Nodal Torsional Displacements

The variation of kinetic energy, strain energy and work done due to applied har-
monic torsional and warping moments and axial static force are obtained in terms of nodal
degrees of freedom by substituting equation (7) into equations (9-12) given in [24] as:
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6T = —(8de)1xa (-QZ f e[[H(Z)sz[Zm]ZXZ[H(Z)]zsz]dx) {de}axs e 9)
0

Le

OU = (8d,)1x4 (f [[H' (2)]ix2[Zk]ox2[H' (2)]2x4
0 (10)

+ [Hd(Z)]z;xz[Zd]zxz[Hd(Z)]zx4]dZ> {de}axa et

Le .
0V = —(8d;)1x4 (f [H(Z)];I;XZ{QF}ledZ + [[H(Z)]sz{Qm}le]ée> et (11)
0
8V, = (8dediwa (Jy [Hy D], 2], [Hp(D)],,, dz) e (12)
where  [Z,]ox2 = Diag[pAroz plylzxa, [Z]2x2 = Diag[G]  Ely]pxz, [Zaloxz2 =

GDyw GDyy o 2 e T — [H! . r "
[GDWW GDWW 2><2’ [Zp]zxz_Dlag[onro 0]2><2: [H (Z)]4X2_[H1,j(z) HZ,](Z)]2X41

[Hq(2)]2xa = [H{,j(Z) Hz,j(Z)]ZM’ [Hp(z)]z><4 = [H{,j(z) 0];4, (Qr)ixz =
(M,(2) 1Moy (D)1xz , A (Qmdixz = (M,(D]g¢ [Myy (D)6 1x2-

in which M, (z) and M,,(z) are the harmonic end twisting and warping moments applied at beam
ends (i.e.,z=0,L).

Matrix Formulation
The variational form of the Hamilton’s principle is expressed as:

fff STdt — fff (8U + 8V)dt = 0 (13)

From equations (9-12), by substituting into Hamilton’s variational principle in equation
(13), one obtains:

([Kelaxa = Q% [Mclaxa){de}axs = {Felaxa (14)
in which, the stiffness matrix for beam element [K,],.4IS given by:

Le

[Kelaxa = fo [[H’(Z)]Exz[Zk]zxz[H’(Z)]2x4 + [Hd(Z)]sz[Zd]zxz[Hd(Z)]2x4]dZ (15)

The mass matrix for beam element [M,],., IS given by:

Le
Melies = [ TH@ el ZnlaslH s d (16)
0
The element load vector {F,},. is given by:
Le
(Far = j (IH DTt + [ D] (2, [H, D)), ) dz -

+ [[H ()] 52 {Qmlaxale

NUMERICAL RESULTS AND DISCUSION

In this section, several examples for thin-walled open beams of doubly symmetric
cross sections subjected to various harmonic torsional and warping moments and different
boundary conditions are presented to demonstrate the validity, accuracy, and applicability
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of the present finite beam element formulation. While the above formulation provides the
dynamic response under harmonic torsional loads, it can also (i) capture the quasi-static
response under harmonic torsional loads using a very low exciting frequency Q compared
to the first natural torsional frequency w,, of the member (i.e., Q ~ 0.01w,,), and (ii) ca-
pable of extracting the eigen-frequencies and eigen-modes from the steady state dynamic
response. The present finite element formulation is based on the shape functions which
exactly satisfy the homogeneous form of the governing torsional warping coupled equa-
tions. This treatment eliminates mesh discretization errors in conventional finite element
solutions based on polynomial shape functions and thus converge to the solution using a
minimal number of degrees of freedom. As a result, it is observed that, the present nodal
results obtained based on the present finite element using a single two-nodded beam ele-
ment per span yielded results exactly matching those based on the exact closed-form so-
lutions provided by Hjaji and Werfalli [24] up to four significant digits. The numerical
results based on the present finite beam element (with two degrees of freedom per node)
which accounts for shear deformation due to warping and rotary inertia are compared
with exact solutions available in the literature and Abaqus finite beam B130S element
solution which accounts for the effects of shear deformation due to bending. The B310S
beam element (Figure 3) is two-node linear element used for open section members and
has seven degrees of freedom per node (i.e., three translations u, v, w, three rotations
6, 0y, 8, and warping deformation ). Moreover, the present finite element formulation
is applied to investigate the influence of axial static compressive and tensile forces on the
natural torsional frequencies and steady state dynamic of torsional-warping coupled re-
sponse of open thin-walled doubly symmetric members.

Although excellent nodal degrees of freedom for torsional rotation and warping de-
formation results are obtained for quasi-static and dynamic responses of the given beam
based on one beam element (4 dof), but for more general comparison with the Abaqus
finite element solution five finite beam elements were used.

Figure 3: Two-nodded Abaqus B310OS beam element

Example 1- Cantilever I-Beam under Harmonic Torsional Loads
To assess the accuracy and efficiency of the present finite element formulation, a

3.0m cantilever thin-walled beam having doubly-symmetric I-section subjected to vari-
ous harmonic torsional and warping moments; (i) concentrated end twisting moment
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M,(L,t) = 1.60e*kNm, concentrated end warping moment M,,(L,t) = 2.40e**kNm?
applied at the cantilever free end (i.e., z = L), and (ii) uniformly distributed twisting mo-
ment m,(z,t) = 1.40e*kNm/m and warping moment m,, (z,t) = 1.5e**kNm? /m ap-
plied along the cantilever axis is considered as shown in Figure (4). The geometrical
properties of the doubly symmetric cross-section are given in Table (1). For verification
purposes, it is required to (a) compute a quasi-static analysis by adopting a very low ex-
citing frequency Q =~ 0.01w.;, and (b) investigate the steady state dynamic torsional-
warping coupled response at exciting frequency Q = 1.60w,, Where the first natural tor-
sional frequency of the given cantilever beam is f;; = 25.60Hz (i.e., Wy = 27 f;1)-

The numerical results based on the present finite element formulation are compared
to the corresponding results based on the exact solution available in the literature [24] and
Abaqus finite beam element solution. In Abaqus finite element model, the thin-walled
beam is modelled using 100 B310S elements (707 dof) along the longitudinal axis of
the cantilever beam to approach the accuracy of this example. In contrast, the present
finite element uses a single beam element (4 dof) to capture the exact solution. In this
example, the nodal degrees of freedom results obtained from the present finite element
formulation use five beam elements (12 dof) to exhibit more comparison with Abaqus
finite element solution (707 dof).

Table 1: Geometric and properties of doubly symmetric thin-walled I-beam

Iy y

= 18.82 X 10°mm*

D
— — 3074 — 9116 ww
G = 80GPa | J =373.7%x10°mm™ | C,, = 268.0 X 10°mm — 77.94 % 10° 4

E = 200GPa A = 7420mm? L., = 87.10 X 10°mm*

) ) 13.5mm
m,(z,t)=1.40e"*kNm/m M,(L,t)= 1.60e'**kNm '
1
T -7 8.0mm 252mm

mW(z,t)‘:l.SOeiQt kNm2/m
. 3.0m

MW(L,t):‘ 2.40e1 2t kNm? l
! 203mm

Figure 4: A cantilever thin-walled I-beam under various twisting and warping moments

Quasi-Static Response Analysis

To approach the quasi-static response of the cantilever I-beam subjected to various
harmonic twisting and warping moments, the exciting frequency is taken significantly
lower than the first natural transverse frequency, i.e., Q ~ 0.01w;; = 1.608 rad/sec. Table
(2) provides the quasi-static response results for the torsional angle and warping defor-
mation at the beam free end (z = L). It is obvious that the nodal torsional rotation angle
and warping deformation results obtained from the present finite element solution (PS)
based on a single beam element are in excellent agreement with exact solution (ES) in
[24] and Abaqus beam element model (AS). This is a natural outcome of the fact that the
present finite element solution is based on the shape functions which exactly satisfy the
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homogeneous form of the coupled torsional-warping static equations, which in turn elim-
inates discretization errors induced in the conventional finite element formulations. The
present finite element formulation yields very slightly higher and lower values than those

based on exact solution and Abaqus beam model, respectively.

Table 2: Static results for torsional and warping deformations at cantilever free end

Type of load Function Exact Atl)aqus Preslen_t FE Difference | 5.cc %
Static response type solution So( Kg;)n so(sg)o n (%) (ng_ri?sc)e/éso)
Q ~ 0001w, (x10°%) (ES) (707 dof) (4 dof (PS-ES)/PS

m,(z,t) 6:(0) 93.47 93.79 93.52 0.05% -0.29%

= 1.40e"*kNm/m (L) 31.69 31.96 31.71 0.06% -0.79%
my(z,t) = 6(L) 101.2 1015 101.3 0.10% -0.20%
1.80e!%kNm?/m w(L) 47.67 47.89 47.70 0.06% -0.40%
M,(L,t) = 6:(L) 90.64 90.71 90.68 0.04% -0.03%
1.60e'kNm w(L) 42.17 42.22 42.20 0.07% -0.05%
M, (L,t) = 64(L) 63.26 63.33 63.30 0.06% -0.05%
2.40e % kNm? (L) 58.72 58.77 58.74 0.03% -0.05%
m,(z,t), my,(z,t), 64(0) 167.6 167.8 167.7 0.06% -0.06%
M,(L,t),M,(L,t) w(L) 95.91 96.30 95.95 0.04% -0.36%

Although excellent nodal torsional rotation and warping deformation results are ob-
tained for quasi-static response of the given cantilever using one beam element (4 dof),
but for more general comparison with the Abaqus finite element solution (707 dof) five
finite elements are used. The nodal torsional rotation 6,, and warping deformation
¥, (wheren = 1,2,3,4,5) are shown in Figures (5a,c,e,g,i) and (5b,d,f,h,j), respectively,
for cantilever beam under various harmonic twisting and warping moments. Four solu-
tions, based on the exact closed-form solution [24], exact solution [39], Abaqus finite
beam B310S element, and the present finite element solution are overlaid on the same
diagrams for comparison. It is noted that, the present finite element formulation provides
excellent agreement with other three solutions. As a general observation, the present finite
element solution is successful at capturing the static torsional-warping coupled response
of the structural thin-walled member.
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Figure 5: Quasi-static of torsional-warping coupled response for cantilever thin-walled I-
beam under various torsional moments
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Dynamic Response Analysis

The steady state response dynamic analysis for nodal torsional rotation 6,,, and
warping deformation &, of cantilever open thin-walled I-beams subjected to various har-
monic twisting and warping moments captured by using exciting frequency Q =
1.60w;; = 257.4 rad/sec are provided in Table (3). The nodal degrees of freedom results
at cantilever free end obtained using three different solutions: (i) the present finite element
formulation (PS) using a single beam element with 4 dof, (ii) the exact closed-form solu-
tion (ES) in [24], and (iii) Abagqus beam element model (AS) using one hundred B310S
element with 707 dof in order to achieve the solution accuracy. It is observed that, the
nodal results obtained from the present finite element are found exactly identical to the
exact closed-form solution. It is also seen that the present finite element formulation
(which captures the shear deformation due to warping torsion) predict results in close
agreement with the results obtained from Abaqus beam B310S element solution (which
captures only the shear deformation due to bending). In other words, the results obtained
from the present finite element solution using one beam element (4 dof) are differed from
-0.03% to -3.72% from those based on Abaqus finite beam solution using one hundred
B310S element.

Table 3: Dynamic results for nodal torsional and warping functions at cantilever end

Difference Difference
Type of load Function | Exact | Abaqus P;giﬁ?itoEE (%) (%)
Dynamic type solution | solution (PS)
response (x10%) (ES) (AS) (FE-ES)/FE | |(FE — AS)/FE|
Q= 1.60w¢y
m,(z,t) = G4(L) 64.42 64.60 64.42 0.00% -0.28%
1.40e“"kNm/m w(L) 26.48 26.40 26.48 0.00% 0.30%
m,(z,t) = 0-(L) 52.18 52.00 52.18 0.00% 0.34%
1.80e“¥kNm?/m w(L) 7.475 7.230 7.475 0.00% 3.28%
M,(L,t) = G4(L) 46.75 46.90 46.75 0.00% -0.32%
1.60e“*kNm w(L) 7.121 7.180 7.121 0.00% -0.83%
M, (Lt) = G4(L) 10.68 10.80 10.68 0.00% -1.12%
2.40e“Y kNm? w(L) -33.79 | -33.80 -33.79 0.00% -0.03%
m,(z,t),m,(z1t), 0-(L) 80.53 80.40 80.53 0.00% 0.16%
M,(L,t),M,(L,t) w(L) -6.962 | -7.220 -6.961 -0.01% -3.72%

For more comparison, the steady state dynamic responses represented the nodal
torsional rotation 8,,, and warping deformation &, (forn = 1,2,3,....,12) for cantilever
thin-walled I-beam under various harmonic torsional and warping moments with exciting
frequency Q = 1.60w,; = 257.4 rad/sec are displayed against the beam coordinate z as
illustrated in Figures (6a,c,e,g,i) and (6b,d,f,h,j), respectively. The nodal degrees of free-
dom results based on three solutions: (i) the finite element developed in the present study
(PS), (ii) exact closed-form solution (ES) in [24], and (iii) Abaqus beam element (AS)
using 100 B310S elements, are plotted on the same diagrams for the sake of comparison.
It is noted that, the present finite element formulation (using five beam elements with 12
dof) provides an excellent agreement with that based on Abaqus beam solution (using one
hundred B310S beam element with 707 dof) at a fraction of the computational and mod-
elling cost. Again, this is the natural outcome that the present beam element is based on
the shape functions which exactly satisfy the exact solution of the coupled field equations,
which in turn eliminates discretization errors encountered under other interpolation
schemes.
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Figure (6): Steady state dynamic torsional-warping coupled responses for cantilever thin-
walled I-beam under various harmonic twisting and warping moments

Example (2): Effect of Axial Static Force

In order to investigate the effect of axial static forces on the quasi-static, dynamic
analyses and natural torsional frequencies for the coupled torsional-warping responses, a
5000mm simply supported open thin-walled I-beam with fork-type end supports sub-
jected to harmonic distributed twisting moment m,(z,t) = 1.50e***kNm/m and warp-
ing moment m,,(z,t) = 1.80e**kNm?/m and axial static force P,, is considered as
shown in Figure (7). The simply supported beam is unrestrained along its length while
the fork supports prevent the cross-section from torsional rotation and moving laterally
but allow for the warping. The material of the beam is steel with E = 200GPa, G =
78GPa, and material density p = 7800kg/m3, while the geometrical properties of the
cross-section are given in Table (4).

This example is provided to: (1) compute the quasi-static response analysis by
adopting an exciting frequency Q = 0.001w;; = 0.1789 rad/sec, (2) conduct a steady
state dynamic analysis to extract the natural torsional frequencies, (3) conduct a steady
state responses for various exciting frequencies (Q = 1.5w;4, 3.5w¢; and 5.5w;;), and
(4) investigate the effect of axial static force on natural torsional frequencies, quasi-static
and steady state dynamic responses, where the first natural torsional frequency w,, of the
given I-beam is w;; = 178.9 rad/sec.

Table 4: Geometric and properties of doubly symmetric thin-walled I-section beam

A = 4560mm? L = 24.27 X 106mm?* Iy = 3.456 x 10°mm*
J =19.42 x 103mm?* C, = 24.39 x 109mmS Dy, = 17.52 x 10°mm*
y '
12mm
t

|

z0 156mm
7o -z 10mm l

.X;' Fork | |

m,(z,t)=1.50e"*kNm/m

m,,(z,1)=1.80€!* kNm2/m

. 5.0m ™ support 120mm
Figure 7: A Fork-supported I-beam under harmonic distributed twisting and warping mo-

ments
For the sake of validation, the numerical nodal torsional rotation and warping deformation
results obtained from the finite element solution using five beam elements (with 12 dof)
developed in this study are compared with the Abaqus finite element model and exact
closed-form solution [24]. The fork-supported beam is modelled in Abaqus solution by
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using 160 B310S beam elements (i.e., a total of 1127 dof) along the beam axis to achieve
the required accuracy.

Quasi-Static Response Analysis

The quasi-static analysis for torsional-warping coupled response of simply-sup-
ported I-beam subjected to harmonic twisting moment m,(z,t) = 1.50e***kNm/m and
warping moment m,,(z,t) = 1.80e*¥kNm?/m is captured by using very low exciting
frequency Q = 0.001w,; = 0.1789 rad/sec related to the first natural torsional fre-
quency w,; of the given I-beam (i.e., w;; = 178.9 rad/sec). The nodal static results for
coupled torsional-warping response are computed using three different solutions: (a) the
exact closed-form solution presented in [24], (b) the finite element solution using five
beam elements, and (c) Abaqus finite element model using 160 beam B310S elements.
Even though, the present finite element formulation based on two beam element (4 dof)
provided excellent results but for the sake of comparison five beam elements with 12 dof
were used.

The nodal torsional rotation 0,,, and warping deformation function ¥, (where n =
1,2,3, ....,12) as illustrated in Figure (8), based on present finite element solution, Abaqus
beam B310S model, and exact solution [24], are overlaid on the same diagrams for com-
parison. As a general remark, Figure (8) shows excellent agreement between all three
solutions. Furthermore, the developed finite element results based on five beam elements
(12 dof) shows excellent agreement with those based on the Abaqus finite model solution
using 160 beam B310S elements (1127 dof). Again, the present finite element solution is
successful at capturing the static response of the given beam.
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Figure 8: Static analysis for torsional-warping coupled response of fork-supported beam
under distributed harmonic twisting and warping moments with Q@ ~ 0.001w

Dynamic Response Analysis

The steady state torsional-warping responses for simply-supported I-beam sub-
jected to distributed harmonic twisting and warping moments having three different val-
ues of exciting frequencies (; = 1.5w;; = 268.4 rad/sec, Q, = 3.5w;; = 626.2rad/
sec, and Q3 = 5.5w;; = 984.0rad/sec) are illustrated in Figures (9a,c,e) and (9b,d,f),
respectively. The nodal torsional rotation and warping deformation results based on the
present formulation are compared with those based on Abaqus beam model and exact
solutions. It is observed that results obtained from the finite element formulation devel-
oped using five beam elements with 12 dof provide excellent agreement with Abaqus
beam model using 160 B310S elements (1127 dof).
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Figure 9: Dynamic analyses for torsional-warping coupled responses of fork-supported I-
beam under harmonic twisting and warping moments with various exciting fre-
quencies

Steady State Dynamic Analysis - Natural Torsional Frequencies

Under distributed harmonic twisting moment m,(z,t) = 1.50e'*kNm/m and
warping moment m,,(z,t) = 1.80e**kNm?/m , the natural frequencies related to cou-
pled torsional-warping response are extracted from the steady state torsional response
analyses in which the exciting frequency f; varying from nearly zero to 840Hz. Figure
(10a-b) show the nodal torsional rotation @,, and warping deformation ¥, at node 2
against the exciting frequency. The natural torsional frequencies are then obtained at the
peaks of the torsional rotation-frequency relationship. Peaks on both diagrams (Fig. 10a
and 10b) indicate resonance and are thus indicators of the natural torsional frequencies of
the beam. Each peak indicates resonance and thus identifies natural torsional frequencies
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of the given simply supported beam. Then, the first five natural torsional-warping fre-
quencies extracted from the peaks are provided in Table (5). Table (5) presents the first
five natural frequencies extracted from the steady state torsional-warping dynamic re-
sponses obtained based on three different solutions: the exact solution, the present finite
element formulation (both solutions capture the shear deformation effect due to warping)
and Abaqus beam model (which capture only the shear deformation due to bending).

As can be indicated form Table (5), the natural torsional frequencies predicted by
Abaqgus beam model slightly differ from those based on the present finite element and
exact solutions by 0.12%-1.35%. Moreover, the solution predicted by Abaqus B310S
beam model showed slightly lower natural torsional frequencies than other solutions and
this is since the shear deformation due to warping is not captured by such model.

Table 5: First four natural torsional frequencies of simply supported thin-walled I-beam
under distributed harmonic twisting moment

Frequency No. Natural torsional frequencies in Hz
Present Exact | Abaqus % Difference
finite element | solution | solution | % Difference = [PS-ES]/PS | _ [PS-AS]/PS
(PS) (ES) (AS)

1 28.12 28.12 27.74 0.0% 1.35%

2 115.8 115.8 1145 0.0% 1.12%

3 266.1 266.1 264.8 0.0% 0.49%

4 480.8 480.8 480.2 0.0% 0.12%

The first four steady state torsional-warping mode shapes of the simply supported
I-beam under the given harmonic torsional and warping moments are illustrated in Figure
(10c-d). For comparison, the normalized steady state torsional-warping modes
(0,1,/0nmax) aNd (&, /¥..max) based on the present finite element formulation and ex-
act closed-form solution [24] are plotted on the same diagrams for the first four torsional
exciting  frequencies:  f;; = 28.12Hz, f;, = 115.8Hz, f;3 = 266.1Hz,and f;, =
480.8Hz. Nodal results for torsional rotation 6,,, and warping deformation &, obtained
from the present formulation exhibit excellent agreement.
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Figure 10: Natural torsional frequencies and mode shapes of fork-supported I-beam under
distributed harmonic twisting moment

Axial Static Force Effects on Natural Torsional Frequencies

The simply supported thin-walled 1-beam under uniformly harmonic distributed
twisting and warping moments is subjected to axial static force P,, is considered to in-
vestigate the influence of axial static tensile and compressive forces on the natural tor-
sional frequencies. The axial static force is acted through the centroid of the cross-section.
The first five natural torsional frequencies extracted from the steady state dynamic re-
sponse analyses of the given beam are plotted in Figure (11) for different values of axial
forces(i.e.,P,, = —2.0MN,—1.0MN,0.0MN,+1.0MN, +2.0MN). It is observed that,
the results natural torsional frequencies given in Figure (11) show an excellent agreement
between the predictions of natural torsional-warping frequencies based on the present fi-
nite element solution (FES) and exact solution (ES). It is also seen that the natural tor-
sional-warping frequencies increases with the increase of axial static tensile forces, while
an increase of axial compressive static force leads to decrease the natural torsional fre-
guencies. In addition, it is observed that as the order of the natural frequency increases,
the effect of axial static force on the torsional natural frequencies becomes more pro-
nounced. Thus, the effect of axial static force on the high order natural torsional frequen-
cies is more significant than the lower natural frequencies. This leads to conclude that,
the current results for axial static force effects on natural torsional frequencies give the
same concluding remarks were obtained in the previous study [24].
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Figure 11: Axial static force effect on the natural torsional frequencies of simply-supported
I-beam

Axial Static Force Effects on Quasi-Static Response

The axial static force influence on the quasi-static and dynamic torsional-warping
coupled response of the simply-supported I-beam is investigated in Figure (12a-b) by
using very low exciting frequency Q = 0.001w;; = 0.1789rad /sec for quasi-static and
exciting frequency Q = 1.80w; = 322.0rad/sec for dynamic analysis. The diagrams
in Figure (12) are plotted for different values of axial static force that changed from com-
pression to tension (i.e.,P,, = —2.0MN,—1.0MN,0.0MN,+1.0MN,+2.0MN). It is
noted that, as the values of applied axial force increased, the static torsional rotation and
warping deformation responses are decreased. Additionally, it is obvious that the axial
tensile force has a stiffening effect while the compressive force has a softening effect on
the coupled torsional-warping static response. Therefore, the axial static compressive
force has more significant influence on the quasi-static torsional-warping responses for
the simply supported I-beam than that of the corresponding axial static tensile force. In
addition, the results obtained using the present finite element solution (FES) are in excel-
lent agreement with the results of Abaqus finite element solution (AFE).

Axial Static Force Effects on Dynamic Response

The steady state dynamic response nodal results for torsional rotation 6,, and
warping deformation &, versus the beam coordinate axis z are illustrated in Figure (12c-
d) for exciting frequencies Q = 322.0rad/sec, respectively. The effect of axial static
force P,, on the steady state torsional-warping dynamic responses of the simply supported
I-beam is investigated as shown. Again, the nodal results based on the present finite ele-
ment solution (FES) using five beam elements (12 dof) are in excellent agreement with
Abaqus finite element beam solution (AFE) using 160 B310S beam element (1127 dof).
The amplitudes of the nodal torsional displacement @,,, and warping deformation ¥, de-
crease as the axial static force changes from tension P,, = 2.0MN to compression P,, =
—2.0MN. In other words, the results indicated that the axial static compressive force sof-
tens the beam whereas the tensile force stiffens the beam. This observation exhibits that
the axial static force has an opposite effect to that of the quasi-static torsional-warping
response.
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Figure 12: Axial static force effects on static and dynamic torsional-warping analyses of
simply supported I-beam under harmonic twisting and warping moments

Example (3) — Validation of Finite Element Formulation

This example is aimed at establishing the capability of the present finite element
developed in this study to predict the nodal torsional and warping functions for coupled
torsional-warping quasi-static and dynamic responses. A 5.0m fixed-fork open thin-
walled I-beam is subjected to various torsional and warping harmonic moments; distrib-
uted twisting moment m,(z,t) = 0.50e***kNm/m and distributed warping moment
m,,(z,t) = 0.80e**kNm?/m acting along beam axis, while the concentrated twisting
moments M, (1.25m, t) = 1.0e**kNm and M,,(3.75m,t) = 2.5e*kNm applied as
shown in Figure (13). The geometric properties of the beam section are provided in Table
(6). It is required to assess the accuracy and efficiency of the present finite element for-
mulation solution in determining the nodal degrees of freedom for quasi-static response
(2 = 0.001w4;) and steady state dynamic responses with various exciting frequencies
(2 = 50,100, 150 and 200Hz) (under an exciting frequency, where the first natural tor-
sional frequency of the given beam is f;, = 28.49Hz. E = 210GPa, p = 7800kg/m?3

Table 6: Geometric and properties of doubly symmetric thin-walled I-section beam

A = 6500mm? I, = 45.25 x 106mm?* Iy = 10.25 x 10°mm*
J =421.7 x 103mm* C, = 87.62 x 109mmS Dy, = 41.07 X 10°mm*
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Figure 13: A fixed-fork thin-walled I-beam under various harmonic twisting and warping
harmonic moments

Two solutions are provided for this problem to perform the quasi-static and dy-
namic analyses. The first solution is based on the Abaqus finite beam element of 160
beam B310S elements in which a total of 1,127 degrees of freedom were needed to elim-
inate the mesh discretization errors and achieve the required accuracy of the solution. The
second solution is based on the present finite element formulation, in which the beam is
subdivided into only four beam elements along the beam coordinate, i.e., the present finite
element model has only 10 degrees of freedom.

Quasi-Static Torsional-Warping Response Analysis

The nodal torsional rotation &5j and warping deformation ¥j (for i=1,2,3,...,10)

are provided in Figures (14a) and (14b), respectively, for the torsional-warping coupled
static response of the given beam based on three solutions; Abaqus beam model solution,
finite element solution based on exact shape functions [39], and present finite element
formulation. It is observed form these figures that, the nodal torsional rotation and warp-
ing deformation functions predicted by the present finite element model using four beam
elements provide an excellent agreement with those based on Abaqus finite solution using
160 beam B310S elements and static solution using four finite beam elements.
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Figure 14: Static torsional-warping coupled analysis of fixed-fork I-beam under various
harmonic twisting and warping moments
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Dynamic Torsional-Warping Response Analysis

The steady state dynamic torsional-warping responses for the given beam subjected
to various distributed harmonic twisting and warping moments having four different val-
ues of exciting frequencies (f; = 50Hz,
200H~z) are provided and illustrated in Figures (15a-h), respectively.
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Figure 15: Torsional-warping coupled dynamic analysis of fixed-fork beam under various
twisting and warping moments having different exciting frequencies

The nodal torsional rotation &;i and warping deformation ¥ (for i=1,2,3,..10)
results based on the present formulation are compared with those based on Abaqus beam
model. It is observed that results obtained from the finite element formulation developed
using four beam elements with 10 dof provide excellent agreement with Abaqus finite
beam model using 160 B310S elements (1,127 dof). The computational efforts in the
present finite element quasi-static and dynamic solutions are several orders of magnitudes
less than that of Abaqus beam model solution. This is a natural outcome of the fact that
the present finite element is based on the shape functions, which exactly satisfy the ho-
mogeneous form of the governing torsional-warping dynamic equations, which in turn
eliminates discretization errors encountered in finite-element formulations.

SUMMARY AND CONCLUSION
1. A super-convergent finite element formulation was developed for open thin-walled
beams with doubly symmetric cross-sections under various harmonic torsional and
warping moments.
. The present formulation captures the effects of shear deformation due to non-uni-
form torsion, warping deformation and rotary inertial effects.
The new two-noded beam element is based on shape functions which exactly satisfy
the homogeneous solution of the coupled torsional-warping dynamic equations de-
rived in previous study [24].
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The beam element involves no discretization errors encountered under other inter-
polation schemes and generally provides excellent results with a significantly
smaller number of degrees of freedom.

The finite element formulation can efficiently capture the quasi-static and steady
state response of open thin-walled beams under various harmonic torsional and
warping moments. It is also capable of extracting the eigen-frequencies and eigen-
modes from the steady state dynamic response of the structural beam.

The finite element formulation developed in the present study offers excellent
agreement with ABAQUS finite B310S beam element at a fraction of the compu-
tational and modelling effort.

. Results demonstrate that the effects of axial static force are more significant on the

higher natural torsional-warping frequencies than lower natural frequencies.

The axial tensile force has a stiffening effect while the compressive force has a
softening effect on the coupled torsional-warping static response, while this obser-
vation has opposite influence for the case of dynamic response.
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