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ABSTRACT

In this wind-tunnel investigation, unsteady 3-D velocity components over a
hypersonic delta glider have been measured in subsonic wind tunnel using a constant
temperature hot-wire probe at different angles of attack. The effect of the intrusive hot-
wire probe on the vortex core and the vortex structure has been predicted at angles of
attack over 25 degree and x/Cr=0.9 resulting in an early vortex breakdown. Stream wise,
vertical and lateral root-mean-square velocity components over the wing have been

presented. The acquired data are correlated to the surface-pressure data and the laser-
light-sheet results published by the author. The lateral location of the vortex subcore has
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been predicted using the data of the hot-wire measurements, the surface pressure
measurements, and the flow visualization, while the vertical location of the vortex
subcore axis over the wing upper surface is predicted using the data of hot-wire
measurements and the flow visualization. The predicted experimental data using the
intrusive hot-wire probe reflects obvious interferences and deviations from those obtained
using surface pressure transducers. These differences increase by increasing the angle of
attack and by moving downstream close to the trailing edge due to the upstream
movement of the adverse pressure region and to the kinking of the vortex axis over the
rear part of the wing. Based on these results, it is advised to avoid using intrusive probes
to investigate vortex flow because of its distortion effect on the vortex structures and the
early vortex breakdown, and using instead nonintrusive methods as Laser Doppler
Velocimetry (LDV).

KEYWORDS: Wind Tunnel; Hypersonic Glider; Delta Wing; Vortex Flow; Vortex
Breakdown; Hot-wire Measurements; Velocity Components; Surface-
Pressure Measurements;

INTRODUCTION
Vortex Formation

The free stream flow ahead of a delta wing is splitted into upper and lower
streamlines which rejoin at the separation line along the wing leading edge forming
separated free shear layer of two separated adjacent streams of different velocities with
the lower streamlines of higher velocity initiating laminar small waves inducing vertical
velocities and perturbations forming discrete vortices, Figure (1a).
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Figure 1: vorticity formation [1]

The free shear layer thickness increases and mixes gradually by moving away,
Figure (1b) initiating big spiral vortices due to the Kelvin-Helmholtz instability forming
periodically fatter and thinner regions as shown in Figure (1c) forming spirals and
triggering the pairing process and consequentially amplifying spatial and irregularities in
the vortex structure forming rotating vortex lumps in the interfacial region of the free
shear layer Figure (1d) and Figure (2). The free shear layer rolls up into a vortex core as
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shown in Figures (1d and 1e, 2, and 3) of wind tunnel smoke and laser-light-sheet flow
visualization over sharp edged delta wing after Omar [2]. The primary vortex can be
divided, after Earnshaw [3], into three regions, namely, the free shear layer, the rotational
core, and viscous subcore as shown in Figure (2).

Frimary Separation et the leeding edge
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(a) Surface Flow Streamlines

Outer ¥ Ow Induced by the Primay vores

(b) Vortex Structure at the Trailing Edge "x/Cr« 1. "
Figure 2 vortex flow over delta wing [1]

Figure 3: primary vortex [2]

The free shear layer generated at the leading edge rolled up forming the primary
vortex induces the outer flow of the primary vortex to reattach on the leeward side of the
delta wing and is continually providing the boundary layer after the reattachment line
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with fresh air of high energy as illustrated in figure after Omar [2]. The reattached flow
moves from the reattachment line outboard toward the leading edge until it separates at
the secondary separation line somewhere between the axis of the primary vortex and the
leading edge in dependence of the flow condition “laminar/turbulent” forming the
secondary vortex. A tertiary vortex may be initiated underneath the secondary vortex with
a rotation in the same sense as the primary vortex.

Vortex Breakdown

Vortex breakdown is a rush sharp deformation of the structure of the vortex core
and dominance of asymmetric flow around the vortex axis after Sarpkaya [4] or
disturbances accompanied by deceleration of the vortex internal flow along the vortex
axis until reaching a stagnation condition forming reversed flow, after Leibovich [5] and
Garg A. and Leibovich [6], in dependence of the external pressure gradient and the
vorticity convection along the vortex axis after Schade H., Michalke, A. (1962) and Hall
[8], and in dependence of the magnitude of the vortex swirling, as an indication of the
vorticity shedded in the rolled up free shear layer, the external pressure gradient and the
vorticity convection along the axis of the vortex Schade H., Michalke [7]. Raising the rate
of generation of the vortices shedded in the vortex sheet to a level exceeding the rate of
convection of these vortices downstream along the vortex axis increasing the
concentrated vortices until exceeding the maximum vortices per unit area "critical
vortices concentration”. The interactions among the vortex-outer-core spirals along with
the formation of a stagnation point on the viscous subcore axis result in a vortex
breakdown in the form of spiral-form or bubble-form vortex breakdown shown in Figure
(4). Vortex breakdown spreads the vortices over a wider region redistributing excessive
vortices in the region aft the vortex-breakdown location resulting in a reduction in the
vorticity concentration inside the vortex sheet. More details are available in Omar [1, 11].
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Figure 4: Vortex breakdown [1]
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EXPERIMENTAL SETUP

Acquiring velocity components of the flow can be achieved using hot wire probes.
Hot wire probe measurements have intrusive nature, the probe interferes with and
modifies the flow being measured. They are affected also by the vibrations, which should
be minimized for unsteady measurements after Jorgensen [9] and Yavuzkurt [10].
Intrusive constant temperature anemometer “CTA” is used in this investigation in TUM
subsonic wind tunnel of 1.5m diameter, 55m/s maximum speed and 0.3 turbulence
intensity, Figure (6 and 7), to predict the unsteady velocity components over a hypersonic
delta glider in subsonic regime. The light-weight stiff carbon-fiber test model used in this
investigation has an aspect ratio AR =1, sweep back angle ALe = 76°, a 670mm length,
335mm span, and 57.2mm maximum thickness as shown in Figure (5a, 5b and 5b). The
hot-wire probes used in this investigation are x probes, which are oriented perpendicular
to each other and at an angle of 45 degrees to the mean flow. In this configuration each
wire sensor is cooled differently depending on the direction and magnitude of the flow.
This enables a unique voltage pair, one for each wire, to be given for each velocity and
angle. The X-wire probe is only able to measure two components of velocity. In order to
fully predict all three velocity components (u, v, w), the probe is rotated around its axis
by 90 degrees to adjust the wire plane against the main flow direction. In this context,
two traverse sweeps are necessary for each plane to obtain all three components of
velocity. With the probe oriented in the horizontal direction the x and y components are
acquired, while orienting the probe in the vertical position allows the prediction of the x
and z components. By analyzing the acquired data, the true stream wise velocity is given
by the vertical orientation of the probe allowing the prediction of both horizontal and
vertical stream wise velocity components as well as the lateral and vertical components.
For this purpose, a DISA probe, type 55A32, which has two platinum-plated tungsten
wires of 1.2mm long and 5um thick with X-configuration arrangement, has been used.
The total length of the probe is 68 mm with a diameter of 7mm. The calibration of the
hot-wire probes is a computer aided fully automated procedure developed based on a
velocity and flow angle dependent temperature correction. The calibration of each probe
requires about 7 hours to take place. The probes were mounted on a computer-controlled
three-axis traverse system. The sampling frequency was 3kHz with 19200 samples for
each channel. A low-pass filter of 1kHz has been used. three degree of freedom traversing
system of 0.lmm accuracy is used to hold the hot wire probe at all predefined
measurement points at two test sections perpendicular to the leeward side of the wing of
x/Cr=0.5 and 0.9 for different angles of attack of 12.5, 25 and 30 degrees and free-stream
velocity of 37m/s. A static and dynamic calibration for the hot wire was made to allow
the conversion of the measured data of the hot wire probe to their corresponding flow
velocity components. The accuracy of the measured velocity components by the used
constant temperature hot wire probe, which lies within 3% after Yavuzkurt and Omar [10,
11], is affected directly by the accuracy of the used hot wire anemometer, accuracy of the
calibration of the probe, accuracy of the traversing system, accuracy of the measured
temperature, and the effect of the intrusive hot wire probe on the vortex flow structure
and vortex breakdown.
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Figure 5a: test model in wind Figure 5b: Wind Figure 5c: Wind tunnel 2

tunnel 2 tunnel 2

The results are correlated to the predicted surface pressure measurements acquired
in a subsonic wind tunnel of 1.2m diameter, 72m/s maximum velocity and 0.2 turbulence
as shown in Figure (5a, b and c). A total number of 70 Kulite piezo resistive full
differential miniature pressure transducers of the type CQ-107-093-5D as shown in
Figure (8) are integrated in the leeside surface of the test model as shown in Figure (9).

More details are available in Omar [1].
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Figure 8: Kulite miniature pressure sensor

Journal of Engineering Research  (University of Tripoli)  Issue (35) March 2023

6



5= 335mm

o Location of a Pressure Probe 13 Pressure Prabes — -
13Pressure drobes—
25 Presurs Pobes <

Figure9: dimensions and test sections of test model

RESULTS AND DISCUSSION

The acquired velocity components predicted using the hot-wire anemometer are
presented in the form of stream wise velocity vector “u/U”, lateral velocity components
“v/U”, vertical velocity components “w/U”, cross-flow velocity vectors, root mean square
values of stream wise velocity vector “r.m.s. (u/U)”, lateral velocity vectors “r.m.s. (v/U)”
and vertical velocity vectors “r.m.s. (w/U)” for 12.5° angle of attack and x/Cr=0.5 are
shown in Figures (10, 11, 12 and 13) sequentially and in Figures (14, 15, 16 and 17) for
x/Cr=0.9. They are presented in Figures (18, 19, 20 and 21) for 25° angle of attack and
x/Cr=0.5 and in Figures (22, 23, 24 and 25) for x/Cr=0.9. At 30° angle of attack and
x/Cr=0.5, these values are shown in Figures (26, 27, 28 and 29) and for x/Cr=0.9 and in
Figures (30, 31, 32 and 33) sequentially. The root mean square value of stream wise
velocity r.m.s. (u/U) at x/Cr=0.5 and x/Cr=0.9 are presented in colors for 12.5°, 25°, and
30° angles of attack in Figures (34, 35 and 36) sequentially. The lateral and vertical
location of the primary-vortex viscous subcore over the wing at different downstream
cross sections “x/Cr” and angles of attack based on hot-wire data are shown in Figures
(37-40, 43-46, 49-56, 59-62, and 65-68). The root mean square values of vertical velocity
components “r.m.s. (w/U)” for x/Cr=0.5 and 0.9 and angles of attack of 12.5° 25° and
30° are shown in Figures (41, 42, 47, 48, 57, 58, 69 and 60) with comparison with data
from surface pressure measurements and laser-light-sheet flow visualization shown in
Figures (72-76).
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measurements indicate that the axis of the

primary vortex moves laterally to the wing longitudinal symmetrical axis by increasing
the angle of attack up to 35° as shown in Figure (72) and moves vertically away from the
wing surface, based on data of laser-light-sheet flow visualization Figure (75), by
increasing the angle of attack up to 45°, but, based on the hot wire data, the vortex axes
is located closer to the wing surface than that predicted based on the data of the laser-

light-sheet flow visualization.
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The vertical location of the vortex axes over the wing, predicted based on the hot
wire data, is located closer to the wing surface than that predicted based on the data of the
laser-light-sheet flow visualization at 12.2° angle of attack Figure (76), it is moved
vertically away from the wing surface by increasing the angle of attack up to 25° to a
location higher than that predicted based on the data of the laser-light-sheet flow
visualization, at 30° angle of attack, it was moved to the opposite direction closer to the
wing surface at a location lower than that predicted based on the laser-light-sheet flow
visualization data because of the interference and modification of the flow initiated by
the intrusive hot-wire anemometer. The disturbing effect of the intrusive hot wire
anemometer on the vortex flow is obvious at all angles of attack for both lateral cross
sections of x/Cr=0.5 and 0.9, and is enormous at high angles of attack of 30° and above
for x/Cr=0.9 close to the area of adverse pressure gradients downstream of the trailing
edge of the wing, resulting in early vortex breakdown at 30° angle of attack at x/Cr=0.9
as shown in Figure (36 and 76). The surface pressure distributions at different lateral cross
sections on the leeward side of the wing, x/Cr from 0.3 to 0.9 Figure (71), indicate that
the maximum suction pressure is predicted at 32° angle of attack for the cross sections of
x/Cr=0.3 to 0.7, while for x/Cr=0.8 and 0.9, the maximum suction pressure is predicted
at 30° angles of attack indicating that the primary vortex over the wing is still healthy
showing no sign of vortex breakdown up to 32° angle of attack at all lateral cross sections
from x/Cr=0.3 to x/Cr=0.9.

The lateral locations of the vortex axis over the wing predicted based on data of
surface-pressure Figure (72) and laser-light-sheet flow visualization Figure (74) at
different angles of attack are identical and they move inboard toward the wing
longitudinal symmetrical line by increasing the angle of attack. The lateral location of the
vortex axis predicted based on the hot-wire anemometer, listed in Table (1), are located
shifted outboard toward the leading edge Figure (73) from their locations predicted based
on the surface pressures and the laser-light-sheet flow visualization data due to the
interference and modification of the flow initiated by the intrusive hot-wire anemometer.

The data of the acquired surface-pressures indicate increased maximum suction-
pressures by increasing the angle of attack up to 30° over all test sections from x/Cr = 0.3
to x/Cr = 0.9 reflecting healthy primary vortex over all test sections with increasing
suction pressure by increasing the angle of attack up to 32.5° for all test sections from the
x/Cr=0.3 to 0.9, and up to 35° for x/Cr=0.3 and 0.5. Beyond 32.5° angle of attack, the
surface suction-pressures decrease at all test sections from x/Cr=0.6 to x/Cr=0.9 and
consequently to the trailing edge of the wing. Increasing the angle of attack to 32.5° leads
to additional inboard lateral movement of the location of the maximum suction pressure
at all test sections to a location at y/Y = 0.6 with an increase in the maximum suction
pressure on the leeward side of the wing at all test sections as shown in Figure (71)
reflecting the presence of a healthy vortex over all test sections in contradiction with the
data acquired from the hot-wire measurements at 30° which indicate a vortex breakdown
at x/Cr=0.9, the reason for that is the disturbance effect of the hot-wire probe on the
sensitive vortex flow at such high angle of attack. Surface-Pressure data show increased
suction pressure at x/Cr = 0.3 by increasing the angle of attack to 35°, but drops at all
other test sections downstream of this location with the maximum drop at x/Cr = 0.9 due
to the adverse pressure gradient and the bending of the vortex core upward away from the
wing upper surface indicating that the vortex breakdown has already reached the trailing
edge and is moving upstream towards the wing apex by increasing the angle of attack.
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The wind tunnel laser-light-sheet data indicate that the lateral location of the vortex
subcore axis remains unchanged along the downstream position of the vortex over the
wing, but it decreases, with different rates, by increasing the angle of attack as shown in
Figure (74) after Omar [2]. The Trajectory of the vortex subcore based on the laser-light-
sheet flow visualization indicate a continuous inboard movement of the vortex subcore
location from y/Y=0.9 at zero-degree angle of attack toward the axis of symmetry of the
wing at y/Y=0.7 by increasing the angle of attack up to 10 degrees. It remains at this
location by further increase in the angle of attack up to 15°. The vortex subcore location
continues its inboard movement to y/Y=0.65 by further increase in the angle of attack up
to 20° and remains at this location up to 30°.

Table 1: Lateral location of the VVortex Subcore

Angle of Attack (degree) 12.5 25 30

y/Y Left 0.7 0.65 0.65
v/Y Right 0.7 0.65 0.65
y/Y Left 0.74 0.73 0.768
y/YRight | 0.773 | 0.755 0.812
y/Y Left 0.7 0.65 0.65
y/Y Right 0.7 0.65 0.65
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SUMMARY AND CONCLUSION

Unsteady 3-D velocity components over a hypersonic delta glider have been
measured in subsonic wind tunnel using a constant temperature hot-wire anemometer.
Streamwise, vertical and lateral root-mean-square velocity components over the wing
have been presented. The acquired data are correlated to the measured surface-pressure
data presented by Omar [1] and the laser-light sheet results Omar [2]. The predicted
experimental data using the intrusive hot-wire probe reflects obvious interferences and
deviations from those obtained using surface pressure transducers. These differences
increase by increasing the angle of attack and by moving downstream close to the trailing
edge due to the movement of the adverse pressure region upstream and the kinking of the
vortex axis over the rear part of the wing. The lateral location of the vortex core axis
predicted based on the hot-wire data moves inboard to the wing symmetrical axis by
increasing the angle of attack from 12.5° to 25° ,but moves in the opposite direction
outboard toward the leading edge of the wing by increasing the angle of attack to 30° in
contradiction with the acquired data using surface pressures and laser-light-sheet flow
visualization which show outboard movement of the vortex subcore axis to the leading
edge by increasing the angle of attack up to 35°. The difference in the results at 30° angle
of attack is due to the interference effect of the intrusive hot-wire probe on the vortex
which have a sensitive structure this high angle of attack due to the upstream movement
of the adverse pressure region and the upward kinking of the vortex core resisting the
downstream convection of the vortices leading to the instability of the vortex structure
and the vortex breakdown. The vertical location of the vortex subcore axis predicted
based on the laser-light-sheet flow visualization moves upward away from the wing upper
surface by increasing the angle of attack up to 45° but moves downward closer to the
wing surface at 30° angle of attack in contradiction to its location predicted using the flow
visualization due to the effect of the intrusive hot-wire probe on the vortex flow which is
sensitive to any disturbances at high angles of attack. This investigation clearly indicates
the negative effect of the intrusive hot-wire probe on vortex flow especially at high angles
of attack leading to wrong results.

NOMENCLATURES
Cr-  Wing root chord u- Streamwise velocity component
Y - Local wing semis pan V- Lateral velocity component
U-  Free stream speed w— Vertical velocity component
X - Local chord-wise distance from wing apex r.m.s-  Root mean square
y- Local span-wise distance from wing root a- sweep back angle
AR  Aspect ratio ALE sweep back angle
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