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 الملخص

تنقسم توربينات الرياح بشكل أساسي إلى نوعين: توربينات الرياح ذات المحور الأفقي 

تم دراسة جودة وأداء توربينات الرياح ذات المحور الأفقي وتوربينات الرياح ذات المحور العمودي. 

على نطاق واسع من قبل الباحثين وتعد وحدة التحكم في زاوية دوران شفرات توربينات الرياح من 

المستخدمة لتحسين الأداء الديناميكي الهوائي لتوربينات الرياح. على عكس  أكثر التقنيات شيوعا  

لتحسين قدرة البدء الذاتي  ر الأفقي، تم إجراء القليل من الدراسات مؤخرا  توربينات الرياح ذات المحو

ذات الشفرات  Hوالأداء الديناميكي الهوائي لتوربينات الرياح ذات المحور الرأسي من النوع 

باستخدام تقنية التحكم  VAWT(. تهدف هذه الدراسة لمعالجة مسألة أداء Darrius VAWTالمستقيمة )

 يبنمذجة توربينات الرياح ذات المحور الرأس للتعقيد الرياضي المرتبط في دوران شفراتها ونظرا  

VAWT( يتم استخدام النتائج التحليلية المستخرجة من نموذج ديناميكيات الموائع الحسابية ،CFD )

(، والذي يمكنه تمثيل سلوك نموذج ANNلتصميم نموذج تعريف النظام باستخدام الشبكات العصبية )

VAWT بالإضافة إلى ذلك، تم تصميم نظامي تحكم ذكيين يعتمدان على كل من الشبكات العصبية .

. علاوة على Darrieus VAWT( للتحكم في زاوية دوران FLC( والمنطق الضبابي )MLP)شبكة 

( FLCو  ANNsلا من أنظمة التحكم )ذلك، تم المقارنة بين نظامي التحكم الذكيين. تظهر النتائج أن ك

 .VAWTنتاج الطاقة إيمكن أن تحقق أداء تحكم أفضل من حيث 

ABSTRACT 

Wind turbines are mainly divided into horizontal and vertical axis wind turbines. 

The quality and performance of wind turbines have been extensively investigated by 

researchers. A pitch angle controller is one of the most common techniques used to 

improve wind turbines’ aerodynamic performance. Unlike horizontal axis wind turbines, 

only a few studies being conducted recently to improve the self-starting capability and 

aerodynamic performance of H-type Vertical Axis Wind Turbines with straight blades 

(Darrieus VAWT). This study aims to process the issue of VAWT performance using the 

pitch angle controller technique. Due to the mathematical complexity associated with 

addressing the behavior of VAWT, numerical results extracted from a Computational 

Fluid Dynamics (CFD) model are used to design a system identification model, neural 

networks (ANNs) based, that can identify the behavior of the VAWT model. In addition, 

two controllers based on both neural networks (MLP-network) and fuzzy logic (FLC) 

techniques were designed to control Darrieus VAWT pitch angle. Moreover, comparisons 

between the two intelligent controllers were provided. Results show that both controllers 

(ANNs and FLC) can achieve better control performance in terms of VAWT power 

regulations. 

KEYWORDS: Fuzzy Logic Controller (FLC); MLP-Network; Pitch Angle; 

Computational Fluid Dynamics (CFD); Wind turbine. 
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INTRODUCTION 

Renewable energy technologies play an important role to reduce air pollution and 

global warming effects. The wind turbine industry is one of the most common alternative 

solutions; two main types of wind turbines are used to extract power from wind: 

Horizontal Axis Wind Turbines (HAWTs) and Vertical Axis Wind Turbines (VAWTs).  

Vertical Axis wind turbines (VAWTs) classify into two principles lift and drag as shown 

in Figure (1); H-Darrieus is a lift type of VAWTs (H-type VAWTs), in which the blades 

are straight with fixed or variable pitch angle. In general, VAWTs can receive the wind 

blowing from any direction, so yawing mechanism is not needed; furthermore, 

maintenance is relatively quick and easy since the transmission equipment and generator 

are placed at ground level. Also, the cost is relatively low because of the simplicity of 

blade design. In contrast, the aerodynamic theories of VAWT are debatable topics and 

uncertain because of the complex aerodynamic analysis and self-starting capability; 

therefore, many investigations are being conducted to overcome the drawbacks [1].  

 

Figure 1: Some types of VAWTs; (a): Savonius- Rotor, (b): Darrieus- Rotor, (c): H-type 

Darrieus- Rotor. 

To improve the performance of VAWTs in terms of power output and self-starting 

capability, a variable pitch control mechanism is suggested by many researchers. The 

proportional–integral (PI) or proportional—integral–derivative (PID) based-pitch angle 

controllers have been often used for power regulation. The performance of this method 

is, however, low at high non-linearity conditions. Another method is a linear quadratic 

Gaussian (LQG) control that is used for the pitch angle control [2]. Although it is a robust 

method, its performance is also limited with a nonlinear system model. Sliding-mode 

control technique has been applied for the pitch angle control; it has good robustness, but 

it needs to know the mathematical model for the system [3]. 

Intelligent control strategies have been proposed as controllers such as fuzzy logic 

control (FLC) and neural network control (ANNs). The advantage of these methods is 

that they have an acceptable potential when the system contains strong non-linearity such 

as strong wind turbulence. Fuzzy logic control is used to investigate the wind turbine 

performance. Specifically, fuzzy logic control (FLC) is applied to control pitch angle and 

its performance is robust and reliable [2]. 

On the other hand, Artificial Neural Network (ANN) can estimate not only several 

nonlinear functions based on available information for training but also a highly desired 

degree of accuracy under certain conditions for the system [4]. 
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Problem Statement 

A variable pitch mechanism is one of the suggested technologies to maximize the 

power of the H-Darrieus rotor type and improve its aerodynamic performance. However, 

most of these technologies need more investigations due to the variation of the flow 

velocities in the upstream and downstream regions and dynamic cyclic changes in the 

angle of attack [1]. Because of limiting the capacity of the generator and converter, the 

generator output power is limited at the rated value. This limitation will be controlled by 

using pitch angle control strategies to capture the aerodynamic power by the wind turbine 

at the high-wind speed regions using some mechanical or electrical devices are needed to 

change the blade pitch angle by rotating the blade around its axis as well as the axis of 

the rotor. To optimize the wind turbine performance, estimation of the value of pitch angle 

at each blade position is necessary to generate the highest value of tangential force and 

torque. The main goal of the present work is to design intelligent controllers based on 

ANNs and fuzzy logic strategies for blade pitch angles and investigate the effect of blade 

pitching on the aerodynamic performance of H-type VAWT in terms of power output. 

LITERATURE REVIEW 

Paraschivoiu [5] claimed that the variable pitch angle technology can improve self-

starting, increase power coefficient peaks, and reduce the vibration of the blade caused 

by the dynamic stall. Miau et al. [6] argued that the starting characteristics for a three-

bladed VAWT can be improved by using pitch control strategies. A vertical-axis wind 

turbine with a variable pitch angle was investigated by Chen, and Zhou [7], and the results 

showed that the power coefficient is enhanced by pitching. Paraschivoiu and Saeed [8] 

analyzed an H- Darrieus VAWT to determine the optimal variation of the blades’ pitch 

angle by using two sinusoidal analytical functions; their results presented that 30% in the 

annual energy production was estimated with a pitch model. In [9], a fixed pitch angle 

Darrieus vertical axis wind turbine with NACA 0021 was optimized using the CFD 

model; the CFD results and experimental data were compared; a good agreement was 

found between them. Sargolzaei [10] applied Artificial Neural Networks (ANNs) to 

predict the power coefficient and torque for seven different types of Savonius VAWT; 

the simulated results, which were compared with experimentally collected data, displayed 

that the power increased by using the ANNs technique. In another study, the ability of the 

Fuzzy Expert System (FES) to predict the power generation of a small hybrid (Darrieus 

and Savonius) VAWT was investigated experimentally by Hossain et al. [11]; the results 

have referred that FES is valid. 

COMPUTATIONAL FLUID DYNAMICS (CFD) MODEL 

The fluid governing equations can be defined by applying the laws of mechanics to 

a fluid. The conservation of mass, conservation of momentum, and conservation of 

energy equations are nonlinear partial differential equations; therefore, it is difficult to 

solve these equations analytically for many engineering applications. However, CFD can 

be used to determine approximate computer-based solutions to solve the governing 

equations [12]. The CFD simulation results of a 2-D Darrieus VAWT were conducted in 

[13] which were obtained by ANSYS FLUENT 15.0 as one of the computational fluid 

dynamics (CFD) commercial software package. These CFD results are used in this 

research. 

The aerodynamic performance of a small three-bladed Darrieus VAWT with 

variable blade pitch angle was predicted at different tip speed ratios (TSRs). The main 

geometrical dimensions for this wind turbine are listed in Table (1). 
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Table 1: Main features of the H-type Darrieus wind turbine. 
Feature Value 

Rotor radius (R) [mm] 525 

Blade height (H) (2D) [mm] 1000 

Blades number (𝑁𝑏) [-] 3 

Blade profile [-] NACA 0012 

Chord (c) [mm] 246 

Rotor speed (ωr) [rad/s] 50 

Pitch angle (β) [°] -6, -4, 0, 4, 6 

Azimuth angle (θ) [°] 0 to 360 

Tip speed ratio (λ or TSR) [-] 1, 1.7, 2, 2.5, 3.3 

Rated power Pelectrical [Watt] 2000 

Solidity(σ) [-], 𝜎 =
𝑁𝑏𝑐

𝜋𝑅
 0.068209 

The blade angles for H-type VAWTs, which include the pitch angle (β), angle of 

attack (α), and relative flow angle (φ), are illustrated in Figure (2). 

V 

U 

αα 

β˂0 Φ 

β˃0 

Ɵ 

 
Figure 2: Blade angles: β pitch angles, α angle of attack, φ flow angle. 

To study the aerodynamic characteristics around the blade such as dynamic stall, 

boundary layer etc., some coefficients should be considered such as lift, drag, and moment 

coefficients. These coefficients (𝐶𝐿, 𝐶𝐷, and 𝐶𝑚) can be expressed as follows [14] 

 𝐶𝑙 =
2𝐹𝑙

𝜌𝐴𝑢∞
2                (1) 

𝐶𝑑 =
2𝐹𝑑

𝜌𝐴𝑢∞
2                (2) 

𝐶𝑚 =
2𝜏𝑡

𝜌𝐴𝑅𝑢∞
2                (3) 

where ρ is air density in (kg/m3), A is the swept area by the turbine in (m2) (e.g., for 

an H-type VAWT, A=2RH, where H is the blade length), 𝜏𝑡 is the rotor torque in (Nm), 

and Fl and Fd are the lift and drag forces. Fluent CFD ANSYS can estimate lift, drag, 

and moment coefficients for the NACA 0012 airfoil based on the Airfoil Database Tool 

[15].  

Figure (3) shows different experimental data of the NACA0012 [16]. The lift 

coefficient (CL) with a varying angle of attack and the relationship between both lift and 

drag coefficients. 
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Figure 3: Lift and drag coefficients experimental data for NACA 0012 [16] 

The amount of mechanical power, 𝑃𝑚, that can be absorbed by a wind turbine.  

𝑃𝑚 = 𝜔𝑟𝜏𝑡              (4) 

where 𝜔𝑟 is the rotational speed of rotor in (rad/sec). The extracted power from the wind 

is proportional to the cube of the wind speed and can be expressed as: 

𝑃𝑊𝑖𝑛𝑑 = 1

2
𝜌𝐴𝑢∞

3              (5) 

At different TSRs, the optimum pitch angles βopt as well as the maximum power 

coefficients are estimated using CFD ANSYS software for each blade along the blade 

trajectory. In this research, the control strategy based on fuzzy logic and artificial neural 

networks is proposed to control blade pitch angle (β) for only one blade (the third blade) 

because the variation in pitch angle compared to the first and second blades is small for 

all TSRs, making control analysis easier.  

In the CFD model, the rotor performance of VAWT is estimated using the power 

coefficient (𝐶𝑝). It is the ratio of the mechanical power produced by the wind turbine (𝑃𝑚) 

to the power available in the wind (𝑃𝑊ind) [17]: 

𝐶𝑝 =
𝑃𝑚

𝑃𝑊𝑖𝑛𝑑
=

2𝜔𝑟𝜏𝑡

𝜌𝐴𝑢∞
3 =

2𝜔𝑟(𝐶𝑚(0.5𝜌𝐴𝑢∞
2 𝑅))

𝜌𝐴𝑢∞
3 = 𝐶𝑚

𝜔𝑟𝑅

𝑢∞
= 𝐶𝑚𝜆         (6) 

H-TYPE VAWT MATLAB MODELING 

Aerodynamic Model of an H-Type VAWT 

By wind turbines, some parts of power, which is limited by the Betz limit, can be 

extracted from the wind; the power coefficient of the turbine (Cp) represents this fraction.  

Therefore, the wind turbine power can be expressed as 

𝑃𝑤𝑡 = 1

2
𝜌𝐴𝑢∞

3 𝐶𝑝(𝜆, 𝛽)             (7) 

where u∞ is wind speed that is collected at Mulligan’s telecommunication site [18]; 

Variable wind speed, which starts at 2 m/s and reaches around 14 m/s, is set to test the 

system. Wind speeds varied considerably in short periods as shown in Figure (4). 
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Figure 4: Wind speed for the proposed control system. 

The power coefficient Cp is a function of the blade pitch angle 𝛽 and the tip speed 

ratio, TSR, (λ) [2]: 

𝐶𝑝(𝜆, 𝛽) = 𝑐1 (𝑐2
1

𝜆𝑖
− 𝑐3𝛽 − 𝑐4𝛽𝑥 − 𝑐5) 𝑒

(−𝑐6
1

𝜆𝑖
)
          (8) 

where   
1

𝜆𝑖
=

1

𝜆+0.08𝛽
−

0.035

1+𝛽3   and c1=0.5, c2=116, c3=0.4, c4=0, c5=5, c6=21, and x=0.0 

The tip speed ratio λ is defined as the ratio between the blade tip speed and the wind 

speed 𝑢∞     

𝜆 =
𝜔𝑟𝑅

𝑢∞
                  (9) 

Equations 7, 8, and 9 are used for modeling the H-type VAWT plant using 

MATLAB Simulink. 

Pitch Actuator 

In this work, the pitch angle for one blade is controlled by an intelligent controller 

based on fuzzy logic and neural network strategies. The optimum pitch angles βopt, which 

gives the maximum power coefficient Cp,max, are defined using Computational Fluid 

Dynamics (CFD). Moreover, a pitch servo is used to set the blades into the required 

position by adjusting the rotation of the blades around the longitudinal axes. Because the 

pitch actuator is a nonlinear servo, it is difficult to describe the dynamic model of the 

servo.  For simplicity, it is assumed that the dynamic model of the servo is a first-order 

transfer function (i.e., integrator) [19].  

�̇� =
1

𝜏𝛽
𝛽𝑐 −

1

𝜏𝛽
 𝛽            (10) 

Where β  and β̇ are the actual pitch angles and their gradients, respectively. βc is the 

output pitch angle of the intelligent controllers that should be limited by the time constant 

τβ which is typically in the range of 0.2 to 0.25 s [2]. In addition, the rate of pitch angle 

β̇ is equal to -20 to 20o s-1. Another measure “dead zone” is used to ignore commanded 

pitch rates less than ± 0.1 o s-1. Figure (5) shows the block diagram of the typical pitch 

angle control system; the power is controlled by a controller that produces a βc signal to 

the pitch actuator. 
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Figure 5: Actuator block diagram [20]. 

METHODOLOGY 

System Identification 

System identification is a process to identify the model based on the input and 

output data. To design the controller, the dynamic model of the system should be 

presented; moreover, the dynamic parametric models are identified by connecting the 

input of the system to the output and time [21]. This assumption may lead to unreasonable 

control results for highly nonlinear systems. As a result, a linear control system does not 

apply to the process in which conditions change fast relative to the system’s time. Because 

there are no direct methods to parameterize and analyze non-linear dynamic systems, the 

design of non-linear controllers is more complicated [22]. Therefore, system 

identification using Artificial Neural Networks (ANNs) is a useful and time-consuming 

technique that can be used for modelling and mapping nonlinear systems [23]. Model 

parameters can be determined by training the network using input(s) and output(s) data; 

thus, developing an exact mathematical model to represent a nonlinear model system is 

not necessary. The purpose of system identification is to minimize the error between the 

predicted output and the actual output of the system, this error e(k + 1) can be expressed 

as follows [24]; 

𝑒(𝑘 + 1) = |�̂�𝑝(𝑘 + 1) − 𝑦𝑝(𝑘 + 1)|          (11) 

where �̂�𝑝(𝑘 + 1) the predicted output and 𝑦𝑝(𝑘 + 1) the actual output. 

In this work, system identification using MLP-ANNs is presented to model or map 

the H-type VAWT based on CFD simulation results to behave like the plant (H-type 

VAWT) which is a nonlinear plant; CFD results are proposed as input and output training 

data. A fully connected two-layer feedforward MLP-ANN with two inputs and one output 

unit is considered with the number of hidden nodes and output layers of 20 and 5, 

respectively, as shown in Figure (6). The sigmoid function is used as the activation 

function for neurons in the hidden layer. The features (or the set of inputs) of MLP-ANNs 

are defined as tip speed ratios (1-4) and azimuth angles (0-360 degrees) whereas pitch 

angle values have been chosen as the output data (targets). Also, the datasets are divided 

into 75% for training and the remaining 25% for testing with Levenberg-Marquardt (LM) 

backpropagation algorithm as a training method. This training process consists of 

executing the LM algorithm for 1000 epochs over the data set. The Mean Squared Error 

(MSE) is also selected to calculate the performance metric. These procedures are 

accomplished using MATLAB code and then converted to MATLAB Simulink model. 
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Figure 6: Block diagram of an MLP-ANNs 

Figure (7) shows the third blade’s optimum pitch angles at different TSRs, and 

azimuth angles based on CFD results. Five different optimal pitch angles of -4o, -3o, -2o, 

0o, and 4o are used to obtain the reference power output of the H-type VAWT ( 𝑃𝑟𝑒𝑓). 

 
Figure 7: The CFD optimum pitch angles (βopt) for the third blade. 

Pitch Angle Control Based on ANNs 

As mentioned in the previous section, the dynamics of a vertical axis wind turbine 

VAWT system has highly nonlinear features; hence, blade pitch control based on MLP-

ANNs is proposed in this research. The MLP-ANN structure for system identification and 

blade pitch control is similar; however, the training data are different in terms of inputs. 

The set of input consists of three signals: the power deviation from its reference value ΔP 

(i.e.,  𝑒𝑟𝑟𝑜𝑟 (𝑒) = 𝑃𝑟𝑒𝑓 − 𝑃𝑔), the error variation �̇� (δ (ΔP)/δt) and TSRs. The set of inputs 

is then sent to the MLP-ANNs controller to produce the output signal of the pitch angle 

βc and set the blade into the required position using pitch servo as shown in Figure (8). 

The plant model, which is the actual model of the VAWT, receives the magnitudes of the 

pitch angle (𝛽𝑎𝑐𝑡𝑢𝑎𝑙) to generate the actual VAWT power output (𝑃𝑔). 
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Figure 8: Pitch angle control based on MLP-ANNs and FLC methods. 

Fuzzy Logic Control (FLC) 

The block diagram in Figure (8) is also used for the proposed FLC system based on 

Mamdani-type Fuzzy Inference System (FIS). Similarly, the input signals of 𝑒, �̇�, and 

TSR (crisp inputs) are converted into the fuzzy set (fuzzification) by using the triangular 

symmetrical membership function as indicated in Figure (9). The design of an FLC 

includes “if-then” rules that are formulated in linguistic terms based on the developer’s 

knowledge. The rules in this study are created based on CFD results and the previous 

ANN controller results.  

 
Figure 9: Description of inputs and output for FLC. 

The output of the fuzzification process is used to generate the fuzzified output 

according to the rules set defined. Finally, in the de-fuzzification step, the fuzzified output 

is transformed into the required output (pitch angle signals) using the centroid method 

(COA). The pitch angle signals are then used for generating the power output (𝑃𝑔). 

Figure (10) shows the triangular symmetrical membership functions for the fuzzy 

sets of the input signals (𝑒, �̇�, and TSR) and output signal (pitch angle). In FIS, the 

linguistic variables such as TSR e, and  �̇� can be represented by linguistic values as 

Negative Large Large (NLL), Negative Medium Large (NML), Negative Medium (NM), 

Negative Small (NS), Negative (N), Zero (Z), Positive Small Small (PSS), Positive Small 

(PS), Positive (P), Positive Medium (PM), Positive Medium Large (PML), Positive Large 

(PL), and Positive Large Large (PLL). 

https://www.sciencedirect.com/topics/engineering/linguistic-term
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Figure 10: Membership functions of the proposed FLC. 

Table (2) shows the FLC rules that are used for mapping the input variables to the 

output by the following statement: Rule (i): IF TSR (k) is Ai and 𝑒(𝑘) is Bi and �̇�(𝑘) is Ci 

THEN βc is Di. For example: Rule (1) IF TSR is PS and e is PSS and �̇� is N THEN βc is 

NL. 

Table 2: Rules of FLC. 

 

SIMULATION RESULTS 

The effectiveness of the proposed blade pitch control system based on MLP-ANNs 

and FLC for the H-type VAWT is investigated using the MATLAB Simulink tool. 

CFD Results 
In the CFD simulation, the analysis is carried out for pitch angles of β=-6°, -4°, 0°, 4°, 

and 6°; TSRs of λ=1,1.7,2,2.5, and 3.3; and mean wind speed of u∞=10 m/s. Figure (11) 

shows the power coefficients (Cp) curves at the different pitch angles, including the fixed 

pitch angle case (β=0o). The predicted curves are then compared with other published 

experimental and CFD results concerning the power coefficient. 

For the positive pitch angles, Figure (11) shows that the power coefficient at low 

TSR of λ=1 was increased by around 12 percent compared to the fixed pitch angle. This 

means that an enhancement in the self-starting capability of an H-type VAWT can be 

achieved using the blade pitching technique. Table (3) shows the power coefficients (Cp) 

values at different TSRs and pitch angles. 
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Figure 11. Comparison of the current CFD results with published experimental and CFD 

results, with respect to the power coefficient versus the TSR at different pitch 

angles. 

Table 3. Power coefficients (Cp) at different TSRs and pitch angles. 

 

System Identification Results 

The results of the system identification of the H-type VAWT with the third blade 

are shown in Figure (12). It can be observed that the CFD pitch angle results are accurately 

mapped by the system identification based on MLP-ANNs. These pitch angles are then 

used to generate the reference power output Pref.  Figure (13) shows that the performance 

of MLP-ANNs of 0.22529 occurred at several epochs of 66.  

 
Figure 12: Pitch angle comparisons. 
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Figure 13: Performance of MLP-ANNs for system identification. 

Blade Pitch Control Results 

Figure (14) shows the reference and command pitch angle predicted by both the 

MLP-ANN and the Fuzzy Logic proposed controller for one blade. For one rotor 

revolution (i.e., θ=0°-360°), pitch angles by the proposed control strategies vary from 0 

to -4 degrees. However, the pitch angle is equal to zero in most cases which means the 

wind turbine works with a fixed pitch angle. 

 
Figure 14: Pitch angle simulation results for both controllers (ANNs and FLC). 

The upstream and downstream regions of the H-type VAWT rotor are represented 

by azimuth angles of (0°-180°) and (180°-360°), respectively. In the upstream region, 

both controllers can provide a good response for all reference values. However, some 

delays can be noticed by the MLP-ANNs controller. More fluctuations by FLC occurred 

in the downstream region, possibly due to the insufficient design parameters of the 

proposed FLC such as the type of membership functions and rules number. 

The differences between the reference pitch signal and measured pitch signals are 

determined by calculating the root mean square error (RMSE). For both controllers, 

RMSEs in Table (4) show that a good ability to track the desired pitch angle is produced 

by the MLP-ANNs controller.  

Table 4: Root Mean Square Error (RMSE) results 

 

The effect of pitch angle response on the performance of the H-type VAWT in terms 

of the power output is observed by using both controllers as shown in Figure (15).  
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Figure 15: Power generation results for both controllers (ANNs and FLC). 

CONCLUSION 

Small- and medium-sized VAWTs can be utilized effectively as stand-alone wind 

energy generation sources if their efficiency can be further enhanced. In this study, two 

intelligent control algorithms based on neural network and Fuzzy logic approaches are 

proposed for designing an individual active blade pitch control system for an H-type 

VAWT. To develop the control scheme, the system identification (ANNs based) of the 

H-type VAWT model has been designed based on the numerical CFD results. The tip 

speed ratio (TSR), generator output power, and its rate are selected as the control input 

variables of both MLP-ANNs and FLC, in which any information on the wind turbine 

dynamics is not necessary. ANN and Fuzzy logic are two examples of artificially 

intelligent controls that can be used to enhance the performance of VAWTs. The proposed 

MLP-ANNs and FLC controllers can respond satisfactorily to all reference values in the 

upstream region. However, the MLP-ANNs controller can detect some delays. More FLC 

fluctuations were observed in the downstream region, possibly because of the proposed 

FLC's inadequate design parameters, such as the type of membership functions and 

statement of rules. The effect of the responses of both controllers can be seen on the H-

type VAWT.  However, the proposed pitch angle controllers can regulate the power 

output of the H-type VAWT. 
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