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ABSTRACT

This paper explores the evolving role of mathematical curvature and Bézier curve
theory in contemporary architectural design, with a focus on their computational
modeling and structural implications. It analyzes second-order and parametric curves,
including Gaussian curvature, and highlights their integration in digital design
workflows through platforms like Rhino/Grasshopper and Autodesk Revit. Recent
advancements in rational Bézier derivatives, curve self-intersections, and fabrication-
ready geometries are examined through new mathematical contributions. Case studies
such as the “King Abdullah Petroleum Studies and Research Center” (KAPSARC)
project demonstrate the real-world application of Al-driven, performance-based
morphology and topological optimization. The research underscores how digital tools
and mathematical rigor together drive innovation in aesthetic expression, structural
performance, and sustainability in architectural practice.

KEYWORDS: Architectural Geometry, Topological Optimization, Rhino/Grasshopper,
Curve Fabrication-Ready Geometry.

INTRODUCTION

The relationship between architecture and mathematics has long underpinned the
creation of expressive, structurally sound built environments. For centuries, classical
geometric forms—such as circles, ellipses, and parabolas—have shaped the design of
domes, vaults, and acoustically optimized spaces. In today’s digital era, these enduring
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principles have evolved into advanced parametric systems and free-form surfaces
governed by precise mathematical frameworks. Among these tools, Bézier curves and
spline-based models grant architects refined control over curvature continuity, form
rationalization, and fabrication precision. The emergence of Al-driven design tools and
topological optimization techniques now enables architectural forms to adapt
dynamically to structural loads and environmental conditions. This study draws on
foundational research into second-order curves, surface curvature, and Bézier theory,
while also integrating recent investigations into practical challenges such as self-
intersections and derivative precision. Through diagrammatic exploration, classification
of spatial curvature, and computational overlays, this work positions curvature not just
as an aesthetic device but as a fundamental force behind performance-driven
architecture. The mathematical shaping of architectural form has deeply influenced the
evolution of the built environment. Historically, architects employed geometric
constructs like circles, ellipses, and parabolas for their visual elegance and their inherent
structural and functional advantages. With the rise of computational design, these
traditional forms have given way to more complex geometries defined by algorithms
and parametric logic. Bézier curves and spline models have become essential in crafting
free-form, digitally fabricated architecture. Spanning historical precedents to
contemporary Al-assisted workflows, this paper offers a comprehensive perspective on
curvature as both a design language and a driver of performance in modern architectural
practice. Earlier studies have laid the groundwork for understanding curved geometries
in architecture, exploring topics such as second-order curves in dome construction,
parametric design methodologies, and structural shell behavior rooted in Gaussian
curvature. This section consolidates these foundational insights, demonstrating how
they continue to inform and shape current computational approaches in architectural
design.

METHODOLOGY

This research employs a qualitative and diagrammatic approach by analysing
historical references, mathematical derivations, and architectural case studies. Equations
were selected based on their foundational role in describing curvature and digital
modelling logic. Graphical overlays were created to compare different curve types.
Diagrams were generated using Rhino/Grasshopper for spatial curvature modelling.

The interplay between architecture and mathematics has continuously evolved,
demonstrating an enduring partnership that shapes human environments. Historically,
architects relied heavily on intuitive spatial and structural exploration, evident from
classical domes and Gaudi's innovative catenary arches, to contemporary complex
geometries. However, with the advent of computational tools, architectural geometry
has transformed dramatically, becoming an explicitly defined and systematically
explored field. Today, sophisticated digital modelling techniques, notably Bézier and
parametric curves, enable architects to achieve unprecedented levels of aesthetic
complexity, structural optimization, and functional efficiency.

CLASSICAL CURVES IN ARCHITECTURAL DESIGN

Second-Order Curves [1]
Second-order curves include circles, ellipses, parabolas, and hyperbolas. These
shapes are derived from quadratic equations and have been used extensively in
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traditional architecture. A circle, which makes it suitable for domes and arches where
uniform force distribution is desired. The ellipse was used in Roman and Baroque
architecture for its ability to direct acoustic and visual focus in amphitheatres and
cathedrals. Parabolas concentrate light or sound energy, making them ideal for vaulted
ceilings in sacred architecture. Hyperbolas offer aesthetic dynamism and were favoured
in futuristic or high-tech architectural expressions.

Catenary Curves

Catenary were employed by Antoni Gaudi in his gravity-based designs to align
with natural compression paths in structures. They distribute compressive forces more
efficiently than parabolas and are evident in the design of suspension bridges, cathedral
arches, and tensile fabric roofs. In modern architecture, catenary principles inform the
design of long-span shell structures and kinetic facades that react to environmental
loads. For comparison of catenary curve and parabola curve, see Figure (1).

Catenary vs Parabola Comparison
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Figure 1: Comparison of the shapes of a catenary and a parabola, showing differences in
load-bearing behaviour.

Surface Curvature and Gaussian Principles
Gaussian curvature is defined as [2]

K= (fxx fyy - fxzy)/(l + fxz + fyz)z (1)

This property is vital in 3D form-making, such as domes (positive K),
hyperboloids (negative K), or planes (zero K). Understanding Gaussian curvature helps
designers determine how materials will bend or resist deformation. It enables rational
panelling of curved surfaces, structural efficiency in shells, and innovative uses of
double curvature in membrane structures. Additionally, advancements in computational
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design allow architects to simulate and manipulate Gaussian curvature to create visually
striking yet structurally sound forms [2].

PARAMETRIC AND FREE-FORM CURVES ANALYSIS IN ARCHITECTURE

Parametric Equations and Design Logic

Parametric design allows geometry to be defined by variables and equations,
enabling a flexible and responsive design workflow. Unlike static modelling, parametric
modelling establishes relationships between form and data, empowering architects to
quickly iterate, optimize, and adapt shapes to site constraints or performance criteria.
For example, a sinusoidal curve can be adjusted in real-time by altering the amplitude or
frequency based on wind simulations or sun path analysis.

Tools such as Rhino3D with Grasshopper, Autodesk Revit with Dynamo, Maya
MEL, and Houdini are now standard in architecture and urban design studios. These
platforms offer visual scripting environments, allowing designers to program geometric
behaviour without writing raw code [3]. Common mathematical expressions used in
parametric architecture include:

Sine waves for building skins or shading systems

Logarithmic spirals for ramps or spiral staircases

Helical surfaces in roof trusses or bridges

Parametric meshes, used in complex pavilions

These equations support algorithmic design principles, contributing to the
aesthetics and performance of free-form architecture.

BEZIER CURVES AND SPLINES IN ARCHITECTURAL MODELLING

Recent advancements have addressed the challenges posed by self-intersections in
cubic Bézier curves. Yu et al. [4] introduced an efficient algorithm that transforms the
self-intersection problem into a solvable linear system, enhancing the reliability of
Bézier curve applications in architectural modelling. Additionally, Raseli et al. [5]
provided a comprehensive study on constructing cubic Bézier curves using expanded
basic functions, emphasizing their properties and applications in computer-aided
geometric design. This foundational understanding aids architects in accurately
modelling complex geometries.

Bézier curves, first introduced by Pierre Bézier in automobile design, are now
fundamental to architectural geometry. A cubic Bézier curve is mathematically defined
as [2]

B)=(1—-t)3P+3(1—1)2?tP,+3(1—t)t? P, +t3 P,
(2)

where 0 <t<1.
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Cubic Bézier Curve with Control Points
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Figure 2: Annotated Bézier curve analysis using four control points, illustrating control
structure, curve shape, and tangent vectors.

Here, P, through P; are control points that influence the curve's shape. Architects
use Bézier curves for modelling:

Free-form fagades (e.g., complex curtain walls)

Tessellated surfaces (e.g., ETFE or aluminium panels)

Curved interior features (e.g., balustrades, furniture)

Fabrication-ready profiles for CNC milling or robotic construction.

These curves are often extended into Bézier splines—a sequence of Bézier
segments joined with continuity constraints (C' or C?), ensuring smooth transitions
across curves.

In more advanced applications, Bézier models can be transformed into NURBS
(Non-Uniform Rational B-Splines) to handle high-precision tasks such as automotive
surface design or fluid architectural envelopes.

ARCHITECTURAL TOOLS AND PARAMETRIC CASE APPLICATIONS
Many iconic structures exemplify the use of parametric and Bézier-based curves:

e Yas Hotel (Abu Dhabi): Designed using parametric skins based on curvature variation
across the facade

e BMW Welt (Munich): A double-curved form developed using NURBS to
accommodate structural and spatial fluidity

e Al Bahar Towers (Abu Dhabi): Adaptive shading system designed with a parametric
algorithm reacting to solar radiation
These examples show how parametric systems link geometry, performance, and

material behaviour, forming a new paradigm in design thinking.
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Platforms like Karamba3D and Ladybug Tools extend this logic into structural
and environmental analysis, allowing geometry to react to dynamic inputs such as wind
loads, daylighting, or thermal variation.

MATHEMATICAL AND PRACTICAL BENEFITS
Parametric and Bézier-based modelling enhances architectural performance in
several ways:

e Adaptability: Designs can quickly be modified by changing underlying variables

e Structural Efficiency: Forms can be analysed and refined to minimize material waste

e Fabrication Readiness: Smooth curves reduce mechanical stress during fabrication and
simplify toolpath creation

e Data Responsiveness: Architectural forms can be linked to real-time or historical
datasets (e.g., GIS, sensor networks)
Moreover, the continuity properties of Bézier curves (smooth derivatives and

predictable curvature) are crucial in both visual aesthetics and construction tolerances.

EVOLUTION OF CURVATURE APPLICATIONS IN ARCHITECTURAL
GEOMETRY

This timeline graphically represents the historical evolution of curvature usage in
architectural geometry, from classical circles and ellipses to contemporary fabrication-
aware strategies integrating digital tools and optimization techniques.

Evolution of Curvature Applications in Architectural Geometry
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Figure 3: Timeline representing the historical evolution of curvature usage in
architectural geometry.

SPATIAL CURVATURE IN ARCHITECTURAL GEOMETRY

These figures illustrate the three fundamental types of curvature in architectural
spatial design. Understanding these helps in selecting appropriate geometries for
structural performance, material efficiency, and visual aesthetics:
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Positive Curvature (Dome)
Dome-shaped forms exhibit positive Gaussian curvature, often used in shells and
domes for even stress distribution.

Figure 4: Positive Gaussian curvature.

Negative Curvature (Saddle Surface)
Hyperbolic paraboloids and saddle surfaces represent negative curvature, applied
in tensile roofs and expressive shell structures.

Figure 5: Negative curvature.

Zero Curvature (Flat Plane)
Flat planes exhibit zero curvature and are common in conventional slab and wall
construction.
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Zero Curvature (Flat Plane)

Figure 6: Zero Curvature.

Comparative Relationship of Curvature Types

This bar graph illustrates the relative Gaussian curvature values for three
geometric surface types used in architectural design: negative curvature for hyperbolic
(saddle) forms, zero curvature for flat planes, and positive curvature for dome-like
structures. This comparison aids in understanding spatial form behaviour in terms of
structural efficiency and visual impact [6].
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Figure 7: Relative Gaussian curvature values for three geometric surface types.

OVERLAY ANALYSIS OF ARCHITECTURAL CURVE TYPES

Advanced Mathematical Considerations in Bézier Curve Applications
Shi [7] addressed limitations in existing derivation formulas for rational Bézier
curves, presenting a new formula that accurately computes higher-order derivatives
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beyond the curve's degree. This advancement is crucial for precise curvature analysis in
architectural designs involving rational Bézier curves.

Furthermore, Huylebrouck [8] explored the application of curve fitting techniques
in architecture, demonstrating how mathematical methods can be employed to analyse
and replicate architectural forms. This perspective underscores the intersection of
mathematics and architectural aesthetics.

This overlay graph demonstrates the comparative geometry of various curve types
used in architectural design evolution. It includes:

Classical curves (e.g., circular arcs)

Parametric curves (sinusoidal)

Digitally emergent curves (modulated exponential forms)
Computationally derived curves (nonlinear cubic transformations)
Performance-driven curves (optimized parabolic arches)

Overlay Graph: Evolution of Architectural Curves
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Figure 8: Overlay Analysis of Architectural Curve Types.

FUTURE DIRECTIONS IN CURVATURE-BASED DESIGN

A compelling case study is Zaha Hadid Architects' use of Al-driven design tools
in the design of the KAPSARC building. The team used generative algorithms to evolve
curved geometries in response to environmental simulations. Topological optimization
tools like Autodesk Fusion 360 and Al-assisted tools helped reduce material usage
while maintaining structural performance. These methods are increasingly being
adopted in real-time design workflows where architectural form evolves with input from
performance constraints.

Emerging applications include Al-generated curvature forms, performance-driven
topological optimization, and real-time sensor-based adaptations of curvature for
climate-responsive structures. These directions align mathematical abstraction with real-
world sustainability goals.
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CONCLUSION

Curvature-based design has transitioned from aesthetic experimentation to a
performance-cantered discipline shaped by mathematical precision and digital
responsiveness. This study has traced the lineage of curved geometries from classical
constructs to computationally defined surfaces, emphasizing the roles of Bézier curves,
Gaussian curvature, and parametric equations. Integrating rational Bézier derivatives
and addressing curve continuity and self-intersection improves modelling reliability in
complex spatial forms.

The use of Al-assisted design tools and topological optimization exemplified by
projects like Zaha Hadid Architects’ KAPSARC demonstrates how curvature is now
adaptive, data-informed, and fabrication-aware. Parametric workflows empower
architects to create sustainable, structurally efficient, and visually dynamic
environments while minimizing waste and maximizing precision. As architectural
geometry becomes increasingly informed by real-time environmental and structural
data, the mastery of curvature mathematics will be central to the discipline’s future.
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