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 الملخص

صمیم یستكشف ھذا البحث الدور المتطور للانحناء الریاضي ونظریة منحنى بیزییھ في الت
المعماري المعاصر، مع التركیز على نمذجتھما الحاسوبیة وآثارھما الإنشائیة. ویحلل البحث 
منحنیات الدرجة الثانیة والمنحنیات البارامتریة، بما في ذلك الانحناء الغوسي، ویسلط الضوء على 

 و Rhino/Grasshopper تكاملھا في سیر عمل التصمیم الرقمي من خلال منصات مثل
.Autodesk Revit   ویتناول البحث التطورات الحدیثة في مشتقات بیزییھ المنطقیة، وتقاطعات

المنحنیات الذاتیة، والھندسة الجاھزة للتصنیع من خلال مساھمات ریاضیة جدیدة. وتظُھر دراسات 
التطبیق  ، KAPSARC"مركز الملك عبد الله للدراسات والبحوث البترولیة" حالة، مثل مشروع

العملي للمورفولوجیا والتحسین الطوبولوجي القائم على الأداء والمُحرك بالذكاء الاصطناعي. 
ویؤكد البحث على كیفیة مساھمة الأدوات الرقمیة والدقة الریاضیة معاً في دفع عجلة الابتكار في 

 التعبیر الجمالي، والأداء الإنشائي، والاستدامة في الممارسة المعماریة.

ABSTRACT 
This paper explores the evolving role of mathematical curvature and Bézier curve 

theory in contemporary architectural design, with a focus on their computational 
modeling and structural implications. It analyzes second-order and parametric curves, 
including Gaussian curvature, and highlights their integration in digital design 
workflows through platforms like Rhino/Grasshopper and Autodesk Revit. Recent 
advancements in rational Bézier derivatives, curve self-intersections, and fabrication-
ready geometries are examined through new mathematical contributions. Case studies 
such as the “King Abdullah Petroleum Studies and Research Center” (KAPSARC) 
project demonstrate the real-world application of AI-driven, performance-based 
morphology and topological optimization. The research underscores how digital tools 
and mathematical rigor together drive innovation in aesthetic expression, structural 
performance, and sustainability in architectural practice. 
KEYWORDS: Architectural Geometry, Topological Optimization, Rhino/Grasshopper, 
Curve Fabrication-Ready Geometry. 

 

INTRODUCTION 
The relationship between architecture and mathematics has long underpinned the 

creation of expressive, structurally sound built environments. For centuries, classical 
geometric forms—such as circles, ellipses, and parabolas—have shaped the design of 
domes, vaults, and acoustically optimized spaces. In today’s digital era, these enduring 
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principles have evolved into advanced parametric systems and free-form surfaces 
governed by precise mathematical frameworks. Among these tools, Bézier curves and 
spline-based models grant architects refined control over curvature continuity, form 
rationalization, and fabrication precision. The emergence of AI-driven design tools and 
topological optimization techniques now enables architectural forms to adapt 
dynamically to structural loads and environmental conditions. This study draws on 
foundational research into second-order curves, surface curvature, and Bézier theory, 
while also integrating recent investigations into practical challenges such as self-
intersections and derivative precision. Through diagrammatic exploration, classification 
of spatial curvature, and computational overlays, this work positions curvature not just 
as an aesthetic device but as a fundamental force behind performance-driven 
architecture. The mathematical shaping of architectural form has deeply influenced the 
evolution of the built environment. Historically, architects employed geometric 
constructs like circles, ellipses, and parabolas for their visual elegance and their inherent 
structural and functional advantages. With the rise of computational design, these 
traditional forms have given way to more complex geometries defined by algorithms 
and parametric logic. Bézier curves and spline models have become essential in crafting 
free-form, digitally fabricated architecture. Spanning historical precedents to 
contemporary AI-assisted workflows, this paper offers a comprehensive perspective on 
curvature as both a design language and a driver of performance in modern architectural 
practice. Earlier studies have laid the groundwork for understanding curved geometries 
in architecture, exploring topics such as second-order curves in dome construction, 
parametric design methodologies, and structural shell behavior rooted in Gaussian 
curvature. This section consolidates these foundational insights, demonstrating how 
they continue to inform and shape current computational approaches in architectural 
design. 

METHODOLOGY  
This research employs a qualitative and diagrammatic approach by analysing 

historical references, mathematical derivations, and architectural case studies. Equations 
were selected based on their foundational role in describing curvature and digital 
modelling logic. Graphical overlays were created to compare different curve types. 
Diagrams were generated using Rhino/Grasshopper for spatial curvature modelling. 

The interplay between architecture and mathematics has continuously evolved, 
demonstrating an enduring partnership that shapes human environments. Historically, 
architects relied heavily on intuitive spatial and structural exploration, evident from 
classical domes and Gaudí's innovative catenary arches, to contemporary complex 
geometries. However, with the advent of computational tools, architectural geometry 
has transformed dramatically, becoming an explicitly defined and systematically 
explored field. Today, sophisticated digital modelling techniques, notably Bézier and 
parametric curves, enable architects to achieve unprecedented levels of aesthetic 
complexity, structural optimization, and functional efficiency. 

CLASSICAL CURVES IN ARCHITECTURAL DESIGN 
Second-Order Curves [1] 

Second-order curves include circles, ellipses, parabolas, and hyperbolas. These 
shapes are derived from quadratic equations and have been used extensively in 
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traditional architecture. A circle, which makes it suitable for domes and arches where 
uniform force distribution is desired. The ellipse was used in Roman and Baroque 
architecture for its ability to direct acoustic and visual focus in amphitheatres and 
cathedrals. Parabolas concentrate light or sound energy, making them ideal for vaulted 
ceilings in sacred architecture. Hyperbolas offer aesthetic dynamism and were favoured 
in futuristic or high-tech architectural expressions. 
Catenary Curves 

Catenary were employed by Antoni Gaudí in his gravity-based designs to align 
with natural compression paths in structures. They distribute compressive forces more 
efficiently than parabolas and are evident in the design of suspension bridges, cathedral 
arches, and tensile fabric roofs. In modern architecture, catenary principles inform the 
design of long-span shell structures and kinetic facades that react to environmental 
loads. For comparison of catenary curve and parabola curve, see Figure (1). 

 

 
Figure 1: Comparison of the shapes of a catenary and a parabola, showing differences in 

load-bearing behaviour. 

 
 Surface Curvature and Gaussian Principles 

Gaussian curvature is defined as [2] 

K = �𝑓𝑓𝑥𝑥𝑥𝑥 𝑓𝑓𝛾𝛾𝛾𝛾 − 𝑓𝑓𝑥𝑥𝑥𝑥2 �/�1 + 𝑓𝑓𝑥𝑥2 + 𝑓𝑓𝛾𝛾2�
2
       (1) 

This property is vital in 3D form-making, such as domes (positive K), 
hyperboloids (negative K), or planes (zero K). Understanding Gaussian curvature helps 
designers determine how materials will bend or resist deformation. It enables rational 
panelling of curved surfaces, structural efficiency in shells, and innovative uses of 
double curvature in membrane structures. Additionally, advancements in computational 
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design allow architects to simulate and manipulate Gaussian curvature to create visually 
striking yet structurally sound forms [2]. 

PARAMETRIC AND FREE-FORM CURVES ANALYSIS IN ARCHITECTURE  
Parametric Equations and Design Logic 

Parametric design allows geometry to be defined by variables and equations, 
enabling a flexible and responsive design workflow. Unlike static modelling, parametric 
modelling establishes relationships between form and data, empowering architects to 
quickly iterate, optimize, and adapt shapes to site constraints or performance criteria. 
For example, a sinusoidal curve can be adjusted in real-time by altering the amplitude or 
frequency based on wind simulations or sun path analysis.  

Tools such as Rhino3D with Grasshopper, Autodesk Revit with Dynamo, Maya 
MEL, and Houdini are now standard in architecture and urban design studios. These 
platforms offer visual scripting environments, allowing designers to program geometric 
behaviour without writing raw code [3]. Common mathematical expressions used in 
parametric architecture include: 

• Sine waves for building skins or shading systems 
• Logarithmic spirals for ramps or spiral staircases 
• Helical surfaces in roof trusses or bridges 
• Parametric meshes, used in complex pavilions 

These equations support algorithmic design principles, contributing to the 
aesthetics and performance of free-form architecture. 

BÉZIER CURVES AND SPLINES IN ARCHITECTURAL MODELLING 
Recent advancements have addressed the challenges posed by self-intersections in 

cubic Bézier curves. Yu et al. [4] introduced an efficient algorithm that transforms the 
self-intersection problem into a solvable linear system, enhancing the reliability of 
Bézier curve applications in architectural modelling. Additionally, Raseli et al. [5] 
provided a comprehensive study on constructing cubic Bézier curves using expanded 
basic functions, emphasizing their properties and applications in computer-aided 
geometric design. This foundational understanding aids architects in accurately 
modelling complex geometries.  

Bézier curves, first introduced by Pierre Bézier in automobile design, are now 
fundamental to architectural geometry. A cubic Bézier curve is mathematically defined 
as [2] 

 

B(t) = (1 − t)3 𝑃𝑃0 + 3(1 − t)2 t 𝑃𝑃1 + 3(1 − 𝑡𝑡) 𝑡𝑡2 𝑃𝑃2 + 𝑡𝑡3 𝑃𝑃3   
 (2) 

 
where 0 ≤ t ≤ 1.  
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Figure 2: Annotated Bézier curve analysis using four control points, illustrating control 

structure, curve shape, and tangent vectors. 

 
Here, 𝑃𝑃0 through 𝑃𝑃3 are control points that influence the curve's shape. Architects 

use Bézier curves for modelling: 

• Free-form façades (e.g., complex curtain walls) 
• Tessellated surfaces (e.g., ETFE or aluminium panels) 
• Curved interior features (e.g., balustrades, furniture) 
• Fabrication-ready profiles for CNC milling or robotic construction. 

These curves are often extended into Bézier splines—a sequence of Bézier 
segments joined with continuity constraints (C¹ or C²), ensuring smooth transitions 
across curves.  

In more advanced applications, Bézier models can be transformed into NURBS 
(Non-Uniform Rational B-Splines) to handle high-precision tasks such as automotive 
surface design or fluid architectural envelopes. 

 ARCHITECTURAL TOOLS AND PARAMETRIC CASE APPLICATIONS 
Many iconic structures exemplify the use of parametric and Bézier-based curves: 

• Yas Hotel (Abu Dhabi): Designed using parametric skins based on curvature variation 
across the façade 

• BMW Welt (Munich): A double-curved form developed using NURBS to 
accommodate structural and spatial fluidity 

• Al Bahar Towers (Abu Dhabi): Adaptive shading system designed with a parametric 
algorithm reacting to solar radiation 
These examples show how parametric systems link geometry, performance, and 

material behaviour, forming a new paradigm in design thinking. 
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Platforms like Karamba3D and Ladybug Tools extend this logic into structural 
and environmental analysis, allowing geometry to react to dynamic inputs such as wind 
loads, daylighting, or thermal variation. 

MATHEMATICAL AND PRACTICAL BENEFITS 
Parametric and Bézier-based modelling enhances architectural performance in 

several ways:  

• Adaptability: Designs can quickly be modified by changing underlying variables 
• Structural Efficiency: Forms can be analysed and refined to minimize material waste 
• Fabrication Readiness: Smooth curves reduce mechanical stress during fabrication and 

simplify toolpath creation 
• Data Responsiveness: Architectural forms can be linked to real-time or historical 

datasets (e.g., GIS, sensor networks) 
Moreover, the continuity properties of Bézier curves (smooth derivatives and 

predictable curvature) are crucial in both visual aesthetics and construction tolerances. 

EVOLUTION OF CURVATURE APPLICATIONS IN ARCHITECTURAL 
GEOMETRY 

This timeline graphically represents the historical evolution of curvature usage in 
architectural geometry, from classical circles and ellipses to contemporary fabrication-
aware strategies integrating digital tools and optimization techniques. 
 

 
Figure 3: Timeline representing the historical evolution of curvature usage in 

architectural geometry. 

 

SPATIAL CURVATURE IN ARCHITECTURAL GEOMETRY 
These figures illustrate the three fundamental types of curvature in architectural 

spatial design. Understanding these helps in selecting appropriate geometries for 
structural performance, material efficiency, and visual aesthetics: 
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Positive Curvature (Dome) 
Dome-shaped forms exhibit positive Gaussian curvature, often used in shells and 

domes for even stress distribution. 
 

 
Figure 4: Positive Gaussian curvature. 

 

Negative Curvature (Saddle Surface) 
Hyperbolic paraboloids and saddle surfaces represent negative curvature, applied 

in tensile roofs and expressive shell structures. 

 
Figure 5: Negative curvature. 

 
Zero Curvature (Flat Plane) 

Flat planes exhibit zero curvature and are common in conventional slab and wall 
construction. 
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Figure 6: Zero Curvature. 

 
Comparative Relationship of Curvature Types 

This bar graph illustrates the relative Gaussian curvature values for three 
geometric surface types used in architectural design: negative curvature for hyperbolic 
(saddle) forms, zero curvature for flat planes, and positive curvature for dome-like 
structures. This comparison aids in understanding spatial form behaviour in terms of 
structural efficiency and visual impact [6]. 

 

 
Figure 7: Relative Gaussian curvature values for three geometric surface types. 

 

OVERLAY ANALYSIS OF ARCHITECTURAL CURVE TYPES 
Advanced Mathematical Considerations in Bézier Curve Applications 

Shi [7] addressed limitations in existing derivation formulas for rational Bézier 
curves, presenting a new formula that accurately computes higher-order derivatives 
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beyond the curve's degree. This advancement is crucial for precise curvature analysis in 
architectural designs involving rational Bézier curves. 

Furthermore, Huylebrouck [8] explored the application of curve fitting techniques 
in architecture, demonstrating how mathematical methods can be employed to analyse 
and replicate architectural forms. This perspective underscores the intersection of 
mathematics and architectural aesthetics. 

This overlay graph demonstrates the comparative geometry of various curve types 
used in architectural design evolution. It includes: 

• Classical curves (e.g., circular arcs) 
• Parametric curves (sinusoidal) 
• Digitally emergent curves (modulated exponential forms) 
• Computationally derived curves (nonlinear cubic transformations) 
• Performance-driven curves (optimized parabolic arches) 

 

 
Figure 8: Overlay Analysis of Architectural Curve Types. 

 

FUTURE DIRECTIONS IN CURVATURE-BASED DESIGN 
A compelling case study is Zaha Hadid Architects' use of AI-driven design tools 

in the design of the KAPSARC building. The team used generative algorithms to evolve 
curved geometries in response to environmental simulations. Topological optimization 
tools like Autodesk Fusion 360 and AI-assisted tools helped reduce material usage 
while maintaining structural performance. These methods are increasingly being 
adopted in real-time design workflows where architectural form evolves with input from 
performance constraints.  

Emerging applications include AI-generated curvature forms, performance-driven 
topological optimization, and real-time sensor-based adaptations of curvature for 
climate-responsive structures. These directions align mathematical abstraction with real-
world sustainability goals. 
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CONCLUSION 
Curvature-based design has transitioned from aesthetic experimentation to a 

performance-cantered discipline shaped by mathematical precision and digital 
responsiveness. This study has traced the lineage of curved geometries from classical 
constructs to computationally defined surfaces, emphasizing the roles of Bézier curves, 
Gaussian curvature, and parametric equations. Integrating rational Bézier derivatives 
and addressing curve continuity and self-intersection improves modelling reliability in 
complex spatial forms. 

The use of AI-assisted design tools and topological optimization exemplified by 
projects like Zaha Hadid Architects’ KAPSARC demonstrates how curvature is now 
adaptive, data-informed, and fabrication-aware. Parametric workflows empower 
architects to create sustainable, structurally efficient, and visually dynamic 
environments while minimizing waste and maximizing precision. As architectural 
geometry becomes increasingly informed by real-time environmental and structural 
data, the mastery of curvature mathematics will be central to the discipline’s future. 
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