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 الملخص

 وھو ، MOTOMAN HP3 لـ والعكسیة الأمامیة للحركیات شاملاً  تحلیلاً  الورقة ھذه تقدم
-Denavit خوارزمیة باستخدام الأمامیة الحركات تشُتقّ . حریة درجات بست مُعالج روبوت

Hartenberg (DH)  رت. المفصل زوایا من النھائي ستقبِلالمُ  واتجاه موضع لحساب  واجھة طُوِّ
 بالنسبة. صحتھ من والتحقق الأمامیة الحركیات نموذج لتنفیذ MATLAB رسومیة مستخدم

 الاصطناعیة العصبیة والشبكات التحلیلیة الأسالیب بین یجمع ھجین نھج یقُترح العكسیة، للحركات
 زاویة تحُل. والتفردات الحسابي التعقید لمعالجة (RBF-ANN) الأساسیة الشعاعیة الدالة ذات

ب بینما ھندسیاً، الأولى المفصل  وتحُسب ،RBF-ANN باستخدام والثالثة الثانیة الزاویتان تقَُرَّ
 محاكاة ببرنامج مقارنةً  النموذجین كلا دقة التجریبیة النتائج تثُبت. تحلیلیاً المتبقیة الزوایا

MOTOMAN ، الروبوتیة التطبیقات في فعالیتھما یظُھر مما. 

ABSTRACT 
This paper provides a detailed study of the forward and inverse kinematics of the 

MOTOMAN HP3, a 6-degree-of-freedom robotic manipulator. The forward kinematics 
are derived using the Denavit–Hartenberg (DH) method to calculate the end-effector’s 
position and orientation from the joint angles, and a MATLAB GUI is developed to 
implement and validate the model. For inverse kinematics, a hybrid approach is proposed 
that combines analytical methods with Radial Basis Function Artificial Neural Networks 
(RBF-ANN) to overcome computational complexity and handle singularities. The first 
joint angle is determined geometrically, the second and third angles are approximated via 
RBF-ANN, and the remaining angles are computed analytically. Experimental results 
confirm the accuracy of both models when compared with the MOTOMAN simulation 
software, demonstrating their effectiveness for robotic applications. 
KEYWORDS: Forward Kinematics, Inverse Kinematics, HP3 Manipulator, Denavit-

Hartenberg, MATLAB GUI, RBF-ANN. 

INTRODUCTION 
Kinematics examines the movement of objects without accounting for the forces or 

torques responsible for that motion. In robotics, this involves the mathematical 
examination of a manipulator's movement. Developing appropriate kinematic models is 
essential for evaluating the performance of industrial robotic arms. Primarily includes 
forward kinematics (FK) and inverse kinematics (IK). This end-effector's location and 
pose based on the inverse kinematics (IK). FK influences the end-effector's location and 
pose based on the manipulator's joint variables. This technique finds applications in 
robotics, gaming, and computer animation. In contrast, IK presents greater challenges, as 
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it requires determining joint configurations given the end-effector's desired position 
within the workspace. The literature highlights significant progress in IK techniques, 
emphasizing their precision, speed, and suitability for arms like the MOTOMAN HP3. 
Contemporary studies have investigated combined strategies to optimize accuracy 
alongside real-time execution. Table (1) offers a critical summary of these methods, 
identifying limitations in managing multi-degree-of-freedom systems and variable 
environments. Positioning our integrated (analytical + RBF-ANN) technique amid these 
developments highlights its innovation in tackling the HP3's unique issues, including 
interdependent axes and motion constraints. 

Table 1: Summarized abstract of literature review 
Ref. Summarized Abstract 
[1] Exploration of IK challenges for robotic arms. 
[2] Industrial robots execute operations in structured settings. 
[3] Utilization of MLFFNN for FK and IK in a 3-DOF arm. 

[4] MLFFNN applied to manipulator FK and IK. 
Dual scenarios for FK: focusing on coordinates or full pose. 

[5] Emphasis on both FK and IK formulations. 
[6] Integration of analytical and ANFIS approaches for motion evaluation. 

[7] Offline-trained adaptive NN using LQOSEIC for initial weights, then online 
adaptation via error feedback. 

[8] Emphasis on open-chain kinematic evaluation. T-Matrix technique for tracking 
terminal link displacement. 

[9] VAE framework covering FK, IK, and redundancy resolution. 
[10] Design of a 5-DOF wheeled robot enhancing operational range. 
[11] Provision of FK and IK algorithms and - Evaluation of arm's operational volume. 
[12] Handling of FK and IK for 3-PSP structures. 
[13] Closed-form FK for 3-RPR configurations. 
[14] 3RRR parallel arm modeling via GA and NN. 
[15] PID-LQR hybrid controller for TWRM, enhancing response and steadiness. 

[16] This study presents a robotic arm control system based on surface 
electromyography (EMG) signals from forearm muscles. 

[17] Generalized approach for 3RPS and 3RPS-R manipulators’ kinematics. 

[18] AMPC system dynamically adjusts control parameters using sensor fusion data in 
a 3-DOF bicycle model. 

[19] Examination of arm and structural kinematics and - Analytical closures for diverse 
layouts. 

[20] Vision-based robotic arm control using PD-PIJ kinematics. 
[21] Kinematic analysis and simulation using DH parameters. 

[22] Closed-form inverse kinematics for 5-DOF hybrid manipulator without geometry 
assumptions. 

[23] Surrogate model using VQTAM + K-means for IK. Combines LLR, LWR, and LLE 
for improved prediction. 

[24] Forward/inverse kinematics analyzed for 5-DOF manipulator using MATLAB. 
[25] Review comparing different kinematic modeling techniques. 

[26] Hybrid intelligent control using LQRWFPI and supervised neural networks for 
nonlinear systems. 

[27] Robust robot control via SMC and Parallel PID-LQR strategies. 
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This study details the FK and IK derivations for the 6-DOF MOTOMAN HP3 arm. 
The structure proceeds as follows: An initial overview of the HP3 arm, followed by FK 
and IK sections. The FK part begins with homogeneous transformations, then covers the 
DH method, derives HP3 matrices, and includes angle-to-pulse conversions. A MATLAB 
GUI supports this. Validation occurs via experiments. The IK section uses a blended 
analytical-numerical strategy: geometric solution for θ1, RBF-ANN for θ2/θ3, and 
analytical for θ4-θ6. Results confirm efficacy. The conclusion summarizes and suggests 
extensions [4]. 

THE HP3 MANIPULATOR 
The MOTOMAN HP3 represents a compact, rapid-response robotic arm ideal for 

space-constrained setups. As illustrated in Figure (1), it achieves a 701 mm arm span, 
maximizing its operational area relative to peers. Its versatile mounting options—floor, 
wall, or overhead—enhance adaptability. Optimized for precision tasks like component 
assembly, fluid application, packing, transport, and equipment oversight, the HP3 
delivers high throughput with low setup costs. Notably, Figure (1) reveals its six rotational 
joints [28]. 

 
Figure 1: The MOTOMAN HP3 Manipulator. 

Advantages Over Competing Robots 
Best reach-to-size ratio in its class (701 mm in a compact form). Faster cycle times 

than comparable 3 kg payload robots. Multi-mounting flexibility (floor, wall, ceiling). 
Seamless integration with vision systems, force sensors, and IoT (Industry 4.0). Table (2) 
presents the key attributes of the MOTOMAN HP3 arm. 

 
Table 2: Key attributes of the MOTOMAN HP3 arm. 

Parameter Specification 

Robot Type 6-axis articulated (J1-J6, all revolute) 

Payload Capacity 3 kg (maximum at full extension) 

Repeatability ±0.02 mm (extremely precise) 

Weight ∼ 27 kg (lightweight for easy integration) 

IP Rating Standard: IP30 (optional IP67 for harsh environments) 

Controller Compatible with Yaskawa DX100 or YRC1000 



____________________________________________________________________________________ 
Journal of Engineering Research (University of Tripoli) Issue (40) November 2025 58 

FORWARD/DIRECT AND INVERSE KINEMATICS 
As noted, manipulator kinematics splits into FK—straightforward with unique 

solutions—and IK, which is more demanding due to computational demands, 
singularities, and nonlinear effects. Complete closed-form IK exists only for select 
geometries. Figure (2) diagrams this interplay. 

 
 

Figure 2: The diagram demonstration of forward and inverse kinematics. 

 

Forward/Direct Kinematics 
A robotic arm comprises interconnected segments joined by actuators. FK 

calculates the terminal link's pose from joint inputs (angles or pulses). This involves 
assigning frames to links and linking them via transformations. 

Shifting between frames combines rotation and displacement. Common rotation 
forms include Euler angles, though homogeneous 4x4 matrices prevail in robotics for 
their compactness. Of these demonstrations, homogenous revolutions based on 4 × 4 
actual matrices (orthonormal matrices) have been applied most frequently in robotics 
[28]. 

Let 𝑞𝑞 be a point in ℝ3, and let 𝐹𝐹 is an orthonormal coordinate frame for ℝ3. If 𝜎𝜎 is 
any nonzero scale factor, then the standardized coordinates of 𝑞𝑞 with respect to 𝐹𝐹 are 
denoted [𝑞𝑞]𝐹𝐹 and defined as [29,30]: 

[𝒒𝒒]𝐹𝐹 = 𝜎𝜎 �

𝑞𝑞1
𝑞𝑞2
𝑞𝑞3
1

� (1) 

Note that the homogeneous coordinates of the point 𝑞𝑞 are represented by a vector 
in fourdimensional space ℝ4. Also, to note is that, in robotics, we usually manipulate a 
scale factor 𝜎𝜎 = 1 for convenience. 

If a physical point in 3D space is stated in terms of its homogeneous coordinates 
and we want to change from one coordinate frame to another, we use a 4 × 4 
homogeneous transformation matrix. In general, a homogeneous transformation matrix 𝑇𝑇 
can be partitioned into four separate sub-matrices as follows [30]: 

𝑇𝑇 = � 𝑅𝑅 𝑃𝑃
𝜂𝜂𝑇𝑇 𝜎𝜎� (2) 

Here, the value 𝜎𝜎 in he bottom-right position of the T matrix represents a non-zero 
𝜎𝜎 = 1, and for the purpose of kinematics modeling the vector 𝜂𝜂 will always be s always 
configured to the null vector [30]. 
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The 3 × 3 sub-matrix 𝑅𝑅 positioned in the top-left area of the matrix T functions as 
a rotation matrix [30]. R represents the orientation of the moveable coordinate frame with 
respect to the fixed reference frame [30]. For instance, a T corresponding to rotations 
about the 𝑥𝑥, 𝑦𝑦, or 𝑧𝑧 axes by an angle 𝜃𝜃 are [31]: 

𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥, 𝜃𝜃) = �

1 0 0 0
0 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃) −𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃) 0
0 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃) 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃) 0
0 0 0 1

� (3) 

𝑅𝑅𝑅𝑅𝑅𝑅(𝑦𝑦,𝜃𝜃) = �

𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃) 0 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃) 0
0 1 0 0

−𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃) 0 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃) 0
0 0 0 1

� (4) 

𝑅𝑅𝑅𝑅𝑅𝑅(𝑧𝑧,𝜃𝜃) = �

𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃) −𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃) 0 0
𝑠𝑠𝑠𝑠𝑠𝑠 (𝜃𝜃) 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃) 0 0

0 0 1 0
0 0 0 1

� (5) 

The 3 × 1 column vector 𝑃𝑃 located in the upper-right corner of matrix TTT, serves 
as the translation vector. It specifies the location of the moving coordinate frame’s origin 
with respect to the fixed reference frame [30]. For instance, a transformation that 
translates by the vector 𝑎𝑎𝐢𝐢 + 𝑏𝑏𝐣𝐣 + 𝑐𝑐𝐤𝐤 can be expressed as [31]: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = �

1 0 0 𝑎𝑎
0 1 0 𝑏𝑏
0 0 1 𝑐𝑐
0 0 0 1

� (6) 

Denavit and Hartenberg Algorithm 
FK relies on joint readings and arm geometry. The DH convention standardizes this 

with four parameters per link: The four parameters are:𝑎𝑎𝑖𝑖−1 (link length), 𝛼𝛼𝑖𝑖−1 (link 
twist), 𝑑𝑑𝑖𝑖 (link offset) and 𝜃𝜃𝑖𝑖 (joint angle) aligns with joint motion. As in Figure (3), ai 
along 𝑋𝑋𝑖𝑖, α𝑖𝑖 around 𝑋𝑋𝑖𝑖, di along 𝑍𝑍𝑖𝑖−1, 𝜃𝜃𝑖𝑖 around 𝑍𝑍𝑖𝑖−1 [32].  

For each joint 𝑖𝑖(𝑖𝑖 = 1,2, … ,𝑛𝑛). a coordinate frame is assigned to define the 
Denavit–Hartenberg (DH) parameters. The 𝑍𝑍𝑖𝑖 axis of each frame is oriented along the 
axis of rotation or translation of the corresponding joint. To clarify this concept, Figure 
(3) provides an example illustrating how coordinate frames are assigned for a general 
manipulator. 

 
Figure 3: Coordinate frame assignment for a general manipulator. 
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As illustrated in Figure (3), the distance between 𝑍𝑍𝑖𝑖−1 and 𝑍𝑍𝑖𝑖 measured along the  

𝑋𝑋(𝑖𝑖−1) axis is denoted by 𝑎𝑎𝑖𝑖−1, the angle between 𝑍𝑍𝑖𝑖−1 and 𝑍𝑍𝑖𝑖 measured about the 𝑋𝑋𝑖𝑖 axis 
s represented by 𝛼𝛼𝑖𝑖−1. Similarly, the distance from 𝑋𝑋𝑖𝑖−1 to 𝑋𝑋𝑖𝑖 measured along the 𝑍𝑍𝑖𝑖 axis 
is defined as 𝑑𝑑𝑖𝑖 and the angle between 𝑋𝑋𝑖𝑖−1 to 𝑋𝑋𝑖𝑖 measured about 𝑍𝑍𝑖𝑖 is denoted by 𝜃𝜃𝑖𝑖 [32].  

The general transformation matrix 𝑇𝑇𝑖𝑖𝑖𝑖−1 for an individual link can then be expressed 
as follows: 

𝑇𝑇𝑖𝑖𝑖𝑖−1 = 𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥,𝛼𝛼𝑖𝑖−1)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑎𝑎𝑖𝑖−1, 0,0)𝑅𝑅𝑅𝑅𝑅𝑅(𝑧𝑧, 𝜃𝜃𝑖𝑖)𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(0,0,𝑑𝑑𝑖𝑖) (7) 

𝑇𝑇𝑖𝑖𝑖𝑖−1 =  �

1 0 0 0
0 𝑐𝑐(𝛼𝛼𝑖𝑖−1) −𝑠𝑠(𝛼𝛼𝑖𝑖−1) 0
0 𝑠𝑠(𝛼𝛼𝑖𝑖−1) 𝑐𝑐(𝛼𝛼𝑖𝑖−1) 0
0 0 0 1

� × �

1 0 0 𝑎𝑎𝑖𝑖−1
0 1 0 0
0 0 1 0
0 0 0 1

� × �

𝑐𝑐(𝜃𝜃𝑖𝑖) −𝑠𝑠(𝜃𝜃𝑖𝑖) 0 0
−𝑠𝑠(𝜃𝜃𝑖𝑖) 𝑐𝑐(𝜃𝜃𝑖𝑖) 0 0

0 0 1 0
0 0 0 1

�

× �

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑑𝑖𝑖
0 0 0 1

� 

𝑇𝑇𝑖𝑖𝑖𝑖−1 =  �

𝑐𝑐(𝜃𝜃𝑖𝑖) −𝑠𝑠(𝜃𝜃𝑖𝑖) 0 𝑎𝑎𝑖𝑖−1
𝑠𝑠(𝜃𝜃𝑖𝑖)𝑐𝑐(𝛼𝛼𝑖𝑖−1) 𝑐𝑐(𝜃𝜃𝑖𝑖)𝑐𝑐(𝛼𝛼𝑖𝑖−1) −𝑠𝑠(𝛼𝛼𝑖𝑖−1) −𝑠𝑠(𝛼𝛼𝑖𝑖−1)𝑑𝑑𝑖𝑖
𝑠𝑠(𝜃𝜃𝑖𝑖)𝑠𝑠(𝛼𝛼𝑖𝑖−1) 𝑐𝑐(𝜃𝜃𝑖𝑖)𝑠𝑠(𝛼𝛼𝑖𝑖−1) 𝑐𝑐(𝛼𝛼𝑖𝑖−1) 𝑐𝑐(𝛼𝛼𝑖𝑖−1)𝑑𝑑𝑖𝑖

0 0 0 1

� (8) 

Here 𝑐𝑐(𝜃𝜃𝑖𝑖) and 𝑠𝑠(𝜃𝜃𝑖𝑖) are abbreviations for cos (𝜃𝜃𝑖𝑖) and sin (𝜃𝜃𝑖𝑖), respectively. The 
forward kinematics of the end-effector relative to the base frame is obtained by taking the 
product of all individual transformation matrices  𝑇𝑇𝑖𝑖𝑖𝑖−1 matrices [30-32]. In other words, 

𝑇𝑇base 
end-effector = 𝑇𝑇10𝑇𝑇21 …𝑇𝑇𝑛𝑛𝑛𝑛−1 (9) 

 
Forward Kinematics of the HP3 Manipulator Using the DH Algorithm 

 In this subsection, the required coordinate frames will be established, derive the 
DH parameters, and substitute the according values into the 𝑇𝑇 matrices for the HP3 
manipulator so as to obtain the general transformation matrix 𝑇𝑇base 

end-effector . To facilitate the 
calculation of the 𝑇𝑇 matrices, we will form a table of joint and link parameters whereby 
the values representing each link and joint are determined from the schematic drawing of 
the robot, and are substituted in each 𝑇𝑇 matrix. That being said, by simply inspecting the 
link frame assignment schematic drawing (shown in Figure (4)) and the various 
corresponding engineering dimensions of the HP3 manipulator illustrated in Figure (5) in 
millimeters, one can easily derive the four DH parameters/values for each link and joint 
using the DH method explained in next section [33]. 
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Figure 4: The HP3 Manipulator: link frame assignment schematic (for home position). 

Note that all dimensions are in millimeters. 

 

 
Figure 5: The HP3 Manipulator (home position): side-view with various engineering 

dimensions in millimeters. 

The Denavit–Hartenberg (DH) parameters for each link of the HP3 manipulator are 
presented in Table (3), In this table 𝜃𝜃𝑖𝑖 is the joint angle, 𝑑𝑑𝑖𝑖 denotes the joint offset, 𝑎𝑎𝑖𝑖−1 
s the link length, and 𝛼𝛼𝑖𝑖−1 is the link twist. It is important to note that, for revolute joints 
(as in this case), 𝑎𝑎𝑖𝑖−1,𝛼𝛼𝑖𝑖−1,𝑑𝑑𝑖𝑖 remain constant, while 𝜃𝜃𝑖𝑖 serves as the joint variable for 
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each joint 𝑖𝑖(𝑖𝑖 = 1,2, … ,6). Based on the information depicted in Table (1) and using the 
general definition of the transformation matrix 𝑇𝑇𝑖𝑖𝑖𝑖−1 has been derived, it becomes 
straightforward to calculate each link’s transformation matrix as a function of its 
respective joint variable or angle (𝜃𝜃𝑖𝑖) as shown below: 

𝑇𝑇10(𝜃𝜃1) = �

𝑐𝑐(𝜃𝜃1) −𝑠𝑠(𝜃𝜃1) 0 0
𝑠𝑠(𝜃𝜃1) 𝑐𝑐(𝜃𝜃1) 0 0

0 0 1 0
0 0 0 1

� (10) 

𝑇𝑇21(𝜃𝜃2) = �

𝑐𝑐(𝜃𝜃2) −𝑠𝑠(𝜃𝜃2) 0 𝑎𝑎1
𝑠𝑠(𝜃𝜃2)𝑐𝑐(𝛼𝛼1) 𝑐𝑐(𝜃𝜃2)𝑐𝑐(𝛼𝛼1) −𝑠𝑠(𝛼𝛼1) −𝑠𝑠(𝛼𝛼1)𝑑𝑑2
𝑠𝑠(𝜃𝜃2)𝑠𝑠(𝛼𝛼1) 𝑐𝑐(𝜃𝜃2)𝑠𝑠(𝛼𝛼1) 𝑐𝑐(𝛼𝛼1) 𝑐𝑐(𝛼𝛼1)𝑑𝑑2

0 0 0 1

� =

 �

𝑐𝑐(𝜃𝜃2) −𝑠𝑠(𝜃𝜃2) 0 100
0 0 −1 0

𝑠𝑠(𝜃𝜃2) 𝑐𝑐(𝜃𝜃2) 0 0
0 0 0 1

� (11) 

 

 

Table 3: DH parameters for HP3 Manipulator (Note that all angles are in degrees and 
dimensions are in millimeters. Also, note that 𝜽𝜽𝟐𝟐 = 𝟗𝟗𝟗𝟗∘ portrays the home position of the 

manipulator). 

Axis Link( 𝒊𝒊 ) 𝜽𝜽𝒊𝒊 𝜶𝜶𝒊𝒊−𝟏𝟏 𝒂𝒂𝒊𝒊−𝟏𝟏 𝒅𝒅𝒊𝒊 Joint Range Max Speed 

S 1 𝜃𝜃1(0∘) 0∘ 0 0 170∘ to −170∘ 210∘/s 

L 2 𝜃𝜃2(90∘) 90∘ 100 0 150∘ to −45∘ 180∘/s 

U 3 𝜃𝜃3(0∘) 0∘ 290 0 210∘ to −142∘ 225∘/s 

R 4 𝜃𝜃4(0∘) 90∘ 85 300 190∘ to −190∘ 375∘/s 

B 5 𝜃𝜃5(0∘) −90∘ 0 0 125∘ to −125∘ 375∘/s 

T 6 𝜃𝜃6(0∘) 90∘ 0 90 360∘ to −360∘ 500∘/s 

 

𝑇𝑇32(𝜃𝜃3) = �

𝑐𝑐(𝜃𝜃3) −𝑠𝑠(𝜃𝜃3) 0 𝑎𝑎2
𝑠𝑠(𝜃𝜃3)𝑐𝑐(𝛼𝛼2) 𝑐𝑐(𝜃𝜃3)𝑐𝑐(𝛼𝛼2) −𝑠𝑠(𝛼𝛼2) −𝑠𝑠(𝛼𝛼2)𝑑𝑑3
𝑠𝑠(𝜃𝜃3)𝑠𝑠(𝛼𝛼2) 𝑐𝑐(𝜃𝜃3)𝑠𝑠(𝛼𝛼2) 𝑐𝑐(𝛼𝛼2) 𝑐𝑐(𝛼𝛼2)𝑑𝑑3

0 0 0 1

� =  �

𝑐𝑐(𝜃𝜃3) −𝑠𝑠(𝜃𝜃3) 0 290
𝑠𝑠(𝜃𝜃3) 𝑐𝑐(𝜃𝜃3) 0 0

0 0 1 0
0 0 0 1

�                 (12)

                                                                                                                                       

𝑇𝑇43(𝜃𝜃4) = �

𝑐𝑐(𝜃𝜃4) −𝑠𝑠(𝜃𝜃4) 0 𝑎𝑎3
𝑠𝑠(𝜃𝜃4)𝑐𝑐(𝛼𝛼3) 𝑐𝑐(𝜃𝜃4)𝑐𝑐(𝛼𝛼3) −𝑠𝑠(𝛼𝛼3) −𝑠𝑠(𝛼𝛼3)𝑑𝑑4
𝑠𝑠(𝜃𝜃4)𝑠𝑠(𝛼𝛼3) 𝑐𝑐(𝜃𝜃4)𝑠𝑠(𝛼𝛼3) 𝑐𝑐(𝛼𝛼3) 𝑐𝑐(𝛼𝛼3)𝑑𝑑4

0 0 0 1

� =  �

𝑐𝑐(𝜃𝜃4) −𝑠𝑠(𝜃𝜃4) 0 85
0 0 −1 −300

𝑠𝑠(𝜃𝜃4) 𝑐𝑐(𝜃𝜃4) 0 0
0 0 0 1

�             (13)

                                                                                                                                (13)

𝑇𝑇54(𝜃𝜃5) = �

𝑐𝑐(𝜃𝜃5) −𝑠𝑠(𝜃𝜃5) 0 𝑎𝑎4
𝑠𝑠(𝜃𝜃5)𝑐𝑐(𝛼𝛼4) 𝑐𝑐(𝜃𝜃5)𝑐𝑐(𝛼𝛼4) −𝑠𝑠(𝛼𝛼4) −𝑠𝑠(𝛼𝛼4)𝑑𝑑5
𝑠𝑠(𝜃𝜃5)𝑠𝑠(𝛼𝛼4) 𝑐𝑐(𝜃𝜃5)𝑠𝑠(𝛼𝛼4) 𝑐𝑐(𝛼𝛼4) 𝑐𝑐(𝛼𝛼4)𝑑𝑑5

0 0 0 1

� =  �

𝑐𝑐(𝜃𝜃5) −𝑠𝑠(𝜃𝜃5) 0 0
0 0 1 0

−𝑠𝑠(𝜃𝜃5) −𝑐𝑐(𝜃𝜃5) 0 0
0 0 0 1

�                     (14)
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𝑇𝑇65(𝜃𝜃6) = �

𝑐𝑐(𝜃𝜃6) −𝑠𝑠(𝜃𝜃6) 0 𝑎𝑎5
𝑠𝑠(𝜃𝜃6)𝑐𝑐(𝛼𝛼5) 𝑐𝑐(𝜃𝜃6)𝑐𝑐(𝛼𝛼5) −𝑠𝑠(𝛼𝛼5) −𝑠𝑠(𝛼𝛼5)𝑑𝑑6
𝑠𝑠(𝜃𝜃6)𝑠𝑠(𝛼𝛼5) 𝑐𝑐(𝜃𝜃6)𝑠𝑠(𝛼𝛼5) 𝑐𝑐(𝛼𝛼5) 𝑐𝑐(𝛼𝛼5)𝑑𝑑6

0 0 0 1

� = �

𝑐𝑐(𝜃𝜃6) −𝑠𝑠(𝜃𝜃6) 0 0
0 0 −1 −90

𝑠𝑠(𝜃𝜃6) 𝑐𝑐(𝜃𝜃6) 0 0
0 0 0 1

�               (15)

                                                                                                                              

 

As mentioned in above section, the forward kinematics of the end-effector with 
respect to the base frame is determined by multiplying those six transformation matrices 
[30-32]. 

𝑇𝑇base 
end-effector = 𝑇𝑇60 = 𝑇𝑇10𝑇𝑇21𝑇𝑇32𝑇𝑇43𝑇𝑇54𝑇𝑇65     (16) 

The total transformation in terms of all of the joint angles/variables can be 
alternatively represented as 

𝑇𝑇base 
end-effector = 𝑇𝑇60 = �

𝑛𝑛𝑥𝑥 𝑜𝑜𝑥𝑥 𝑎𝑎𝑥𝑥 𝑝𝑝𝑥𝑥
𝑛𝑛𝑦𝑦 𝑜𝑜𝑦𝑦 𝑎𝑎𝑦𝑦 𝑝𝑝𝑦𝑦
𝑛𝑛𝑧𝑧 𝑜𝑜𝑧𝑧 𝑎𝑎𝑧𝑧 𝑝𝑝𝑧𝑧
0 0 0 1

� (17) 

with, 

𝑛𝑛𝑥𝑥 = �(𝑠𝑠1𝑠𝑠4 − 𝑐𝑐1𝑠𝑠23𝑐𝑐4)𝑐𝑐5 − 𝑐𝑐1𝑐𝑐23𝑠𝑠5�𝑐𝑐6 + (𝑐𝑐1𝑠𝑠23𝑠𝑠4 + 𝑠𝑠1𝑐𝑐4)𝑠𝑠6 
𝑛𝑛𝑦𝑦 = �(−𝑠𝑠1𝑠𝑠23𝑐𝑐4 − 𝑐𝑐1𝑠𝑠4)𝑐𝑐5 − 𝑠𝑠1𝑐𝑐23𝑠𝑠5�𝑐𝑐6 + (𝑠𝑠1𝑠𝑠23𝑠𝑠4 − 𝑐𝑐1𝑐𝑐4)𝑠𝑠6 
𝑛𝑛𝑧𝑧 = (𝑐𝑐23𝑐𝑐4𝑐𝑐5 − 𝑠𝑠23𝑠𝑠5)𝑐𝑐6 − 𝑐𝑐23𝑠𝑠4𝑠𝑠6 
𝑜𝑜𝑥𝑥 = �(−𝑠𝑠1𝑠𝑠4 + 𝑐𝑐1𝑠𝑠23𝑐𝑐4)𝑐𝑐5 + 𝑐𝑐1𝑐𝑐23𝑠𝑠5�𝑠𝑠6 + (𝑐𝑐1𝑠𝑠23𝑠𝑠4 + 𝑠𝑠1𝑐𝑐4)𝑐𝑐6 
𝑜𝑜𝑦𝑦 = �(𝑠𝑠1𝑠𝑠23𝑐𝑐4 + 𝑐𝑐1𝑠𝑠4)𝑐𝑐5 + 𝑠𝑠1𝑐𝑐23𝑠𝑠5�𝑠𝑠6 + (𝑠𝑠1𝑠𝑠23𝑠𝑠4 − 𝑐𝑐1𝑐𝑐4)𝑐𝑐6 
𝑜𝑜𝑧𝑧 = (−𝑐𝑐23𝑐𝑐4𝑐𝑐5 + 𝑠𝑠23𝑠𝑠5)𝑠𝑠6 − 𝑐𝑐23𝑠𝑠4𝑠𝑠6 
𝑎𝑎𝑥𝑥 = (−𝑐𝑐1𝑠𝑠23𝑐𝑐4 + 𝑠𝑠1𝑠𝑠4)𝑠𝑠5 + 𝑐𝑐1𝑐𝑐23𝑐𝑐5 
𝑎𝑎𝑦𝑦 = (−𝑠𝑠1𝑠𝑠23𝑐𝑐4 − 𝑐𝑐1𝑠𝑠4)𝑠𝑠5 + 𝑠𝑠1𝑐𝑐23𝑐𝑐5 
𝑎𝑎𝑧𝑧 = 𝑐𝑐23𝑐𝑐4𝑐𝑐5 + 𝑠𝑠23𝑐𝑐5 
𝑝𝑝𝑥𝑥 = �(−𝑐𝑐1𝑠𝑠23𝑐𝑐4 + 𝑠𝑠1𝑠𝑠4)𝑠𝑠5 + 𝑐𝑐1𝑐𝑐23𝑐𝑐5�𝑑𝑑6 + 𝑑𝑑4𝑐𝑐1𝑐𝑐23 − 𝑎𝑎3𝑐𝑐1𝑠𝑠23 − 𝑎𝑎2𝑐𝑐1𝑠𝑠2 + 𝑎𝑎4𝑐𝑐1 
𝑝𝑝𝑦𝑦 = �(−𝑠𝑠1𝑠𝑠23𝑐𝑐4 − 𝑐𝑐1𝑠𝑠4)𝑠𝑠5 + 𝑠𝑠1𝑐𝑐23𝑐𝑐5�𝑑𝑑6 + 𝑑𝑑4𝑠𝑠1𝑐𝑐23 − 𝑎𝑎3𝑐𝑐1𝑠𝑠23 − 𝑎𝑎2𝑐𝑐1𝑠𝑠2 + 𝑎𝑎1𝑐𝑐1 
𝑝𝑝𝑧𝑧 = (𝑐𝑐23𝑐𝑐4𝑠𝑠5 + 𝑠𝑠23𝑐𝑐5)𝑑𝑑6 + 𝑑𝑑4𝑠𝑠23 + 𝑎𝑎3𝑐𝑐23 + 𝑎𝑎2𝑐𝑐2 

where 𝑐𝑐𝑖𝑖 and 𝑠𝑠𝑖𝑖 are the short hands of cos (𝜃𝜃𝑖𝑖) and sin (𝜃𝜃𝑖𝑖), respectively and 𝑐𝑐𝑖𝑖𝑖𝑖, and 𝑠𝑠𝑖𝑖𝑖𝑖 
are the short hands for cos �𝜃𝜃𝑖𝑖 + 𝜃𝜃𝑗𝑗� and sin �𝜃𝜃𝑖𝑖 + 𝜃𝜃𝑗𝑗�, respectively. Then the position of 
the end effector in base/Cartesian coordinates can be represented as: 

𝑃𝑃 = �
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦
𝑝𝑝𝑧𝑧
� (18) 

and the corresponding Euler angles can be obtained using equations 19, 20, and 21. 

𝜙𝜙𝑧𝑧 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑛𝑛𝑦𝑦
𝑛𝑛𝑥𝑥
� (19) 

𝜙𝜙𝑦𝑦 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � −𝑛𝑛𝑧𝑧
𝑛𝑛𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 (𝜙𝜙𝑧𝑧)+𝑛𝑛𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 (𝜙𝜙𝑧𝑧)� (20) 

𝜙𝜙𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑎𝑎𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 (𝜙𝜙𝑧𝑧)−𝑎𝑎𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 (𝜙𝜙𝑧𝑧)

𝑜𝑜𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐 (𝜙𝜙𝑧𝑧)−𝑜𝑜𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠 (𝜙𝜙𝑧𝑧)� (21) 

where atan is the arctangent function [35]. 
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EXPERIMENTAL RESULTS: FORWARD KINEMATICS OF HP3 
MANIPULATOR 

A user-friendly MATLAB GUI executes the outlined FK. Users input DH values 
(Figure (6) for HP3), select angles/pulses, compute T, and extract Euler. Validation across 
five cases matches MotoSim EG: Home (Figures (7,8)), Second Home (Figures (9,10)), 
and three random (11-16). Identical outputs confirm model reliability. 

Pressing the button "Export" will initialize all required parameters for the 
subsequent process of the interface. Next, the user can either specify the joint angles: 
𝜃𝜃𝑠𝑠,𝜃𝜃𝑙𝑙 ,𝜃𝜃𝑢𝑢, 𝜃𝜃𝑟𝑟 ,𝜃𝜃𝑏𝑏 and 𝜃𝜃𝑡𝑡 or the equivalent pulse counts: pulse  𝑠𝑠, pulse  𝑙𝑙, pulse  𝑢𝑢, pulse  𝑟𝑟, 
pulse  𝑏𝑏 and pulse  𝑡𝑡 using a radio button. Afterwards, by pressing the button "Forward", 
the user can obtain the total transformation matrix 𝑇𝑇base 

end-effector = 𝑇𝑇60. The last column of 
the matrix represents the position of the end effector in base/Cartesian coordinates. Note 
that the GUI will automatically provide the equivalent joint angles and/or pulse counts 
depending on the type of the specified input arguments (joint angles or pulse counts). 
Finally, clicking on the button "Euler angles" yields the corresponding Euler angles. We 
have checked the functionality and the accuracy of our work/GUI for five different 
trials/tests and compared the results to that of Motoman Simulation Program (MotoSim 
EG) outputs. The first trial corresponds to the Home Position of the HP3 manipulator 
(𝜃𝜃𝑠𝑠 = 0∘,𝜃𝜃𝑙𝑙 = 90∘,𝜃𝜃𝑢𝑢 = 0∘, 𝜃𝜃𝑟𝑟 = 0∘,𝜃𝜃𝑏𝑏 = 0∘ and 𝜃𝜃𝑡𝑡 = 0∘ or equivalently pulse  𝑠𝑠 = 0, 
pulse  𝑙𝑙 = 0, pulse  𝑢𝑢 = 0, pulse  𝑟𝑟 = 0, pulse  𝑏𝑏 = 0 and pulse  𝑡𝑡 = 0 ). Figure (7) 
illustrates the position and orientation of the end effector in base/Cartesian coordinates 
and the corresponding pulse counts and joint angles for the Home Position of the HP3 
manipulator using MotoSim. Figure (8) depicts the result of the MATLAB GUI for the 
same pulse counts or joint angles (Home Position). The position and orientation of the 
end-effector in base/Cartesian coordinates shown in both figures are indeed one and the 
same; which in turn prove the correctness of the proposed mathematical model for the 
forward kinematics of the manipulator at hand. 

 

Figure 6: MATLAB GUI: specification of DH parameters for the HP3 manipulator. 
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Figure 7: MotoSim EG: HP3's manipulator home position (Test 1). 

 
 

 
Figure 8: MATLAB GUI: HP3's manipulator home position (Test 1). 

 
Similarly, Figure (9) and Figure (10) show comparison of the results for the Second 

Home Position of the HP3 manipulator ( 𝜃𝜃𝑠𝑠 = 0∘,𝜃𝜃𝑙𝑙 = 90∘,𝜃𝜃𝑢𝑢 = 0∘, 𝜃𝜃𝑟𝑟 = 0∘,𝜃𝜃𝑏𝑏 = −90∘ 
and 𝜃𝜃𝑡𝑡 = 0∘ or equivalently pulse  𝑠𝑠 = 0, pulse  𝑙𝑙 = 0, pulse  𝑢𝑢 = 0, pulse  𝑟𝑟 = 0, pulse 
 𝑏𝑏 = −81900 and pulse  𝑡𝑡 = 0 ). The last three tests/comparisons (Figure (11) and Figure 
(12), Figure (13) and Figure (14), Figure (15) and Figure (16)) show the forward 
kinematics results for arbitrary joint angles and/or pulse counts. Based on all of the 
experimental results presented in this sub-section, one can rest assured that the 
functionality of the proposed forward kinematics process/algorithm/GUI for the HP3 
manipulator is indeed correct. 
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Figure 9: MotoSim EG: HP3's manipulator Second Home Position (Test 2). 

 
 

 
Figure 10: MATLAB GUI: HP3's manipulator Second Home Position (Test 2). 

 
 

 
Figure 11: MotoSim EG. 
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Figure 12: MATLAB GUI: Test 3. 

 
 

 
Figure 13: MotoSim EG: Test 4. 

 

 
Figure 14: MATLAB GUI: Test 4. 
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Figure 15: MotoSim EG: Test 5. 

 

 
Figure 16: MATLAB GUI: Test 5. 

 

Inverse Kinematics 
IK computes joint values from end-pose, vital for planning and control, yet 

complicated by interdependencies, multiplicities, and singularities. Structure dictates 
solvability. Here, we blend analytical (geometric for θ1) and numerical (RBF-ANN for 
θ2/θ3) with analytical for θ4-θ6. n this paper, a hybrid approach combining two primary 
methods is proposed to solve the inverse kinematics problem of the HP3 manipulator. 
The analytical method determines the joint variables through analytical and geometric 
relationships based on the given configuration data, while the numerical method employs 
function approximation using a Radial Basis Function (RBF) Artificial Neural Network 
(ANN)). 
Inverse Kinematics: Solving for 𝜽𝜽 Using Geometric and Analytic Methods 

A simple strategy can be used to solve the inverse kinematics of the first joint angles 
(𝜃𝜃𝑠𝑠) by first deriving the position of the wrist (depicted in Figure (4) as 𝑃𝑃𝑤𝑤 ). Let the 
position and orientation of the end effector in Base/Cartesian coordinates be given as 𝑃𝑃 =
�𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦, 𝑝𝑝𝑧𝑧,𝜙𝜙𝑥𝑥,𝜙𝜙𝑦𝑦,𝜙𝜙𝑧𝑧�

𝑇𝑇
 (as depicted in Figure (4)). The corresponding orientation matrix 

𝑅𝑅60 for the given Euler angles 𝜙𝜙𝑥𝑥,𝜙𝜙𝑦𝑦 and 𝜙𝜙𝑧𝑧 can be shown as follows [31]. 

𝑅𝑅60 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�𝜙𝜙𝑥𝑥,𝜙𝜙𝑦𝑦,𝜙𝜙𝑧𝑧� = �
𝑛𝑛𝑥𝑥 𝑜𝑜𝑥𝑥 𝑎𝑎𝑥𝑥
𝑛𝑛𝑦𝑦 𝑜𝑜𝑦𝑦 𝑎𝑎𝑦𝑦
𝑛𝑛𝑧𝑧 𝑜𝑜𝑧𝑧 𝑎𝑎𝑧𝑧

� = [𝑛𝑛 𝑜𝑜 𝑎𝑎] (22) 
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𝑅𝑅60 =

�
𝑐𝑐�𝜙𝜙𝑦𝑦�𝑐𝑐(𝜙𝜙𝑧𝑧) 𝑠𝑠(𝜙𝜙𝑥𝑥)𝑠𝑠�𝜙𝜙𝑦𝑦�𝑐𝑐(𝜙𝜙𝑧𝑧) − 𝑐𝑐(𝜙𝜙𝑥𝑥)𝑠𝑠(𝜙𝜙𝑧𝑧) 𝑐𝑐(𝜙𝜙𝑥𝑥)𝑠𝑠�𝜙𝜙𝑦𝑦�𝑐𝑐(𝜙𝜙𝑧𝑧) + 𝑠𝑠(𝜙𝜙𝑥𝑥)𝑠𝑠(𝜙𝜙𝑧𝑧)
𝑐𝑐�𝜙𝜙𝑦𝑦�𝑠𝑠(𝜙𝜙𝑧𝑧) 𝑠𝑠(𝜙𝜙𝑥𝑥)𝑠𝑠�𝜙𝜙𝑦𝑦�𝑠𝑠(𝜙𝜙𝑧𝑧) + 𝑐𝑐(𝜙𝜙𝑥𝑥)𝑐𝑐(𝜙𝜙𝑧𝑧) 𝑐𝑐(𝜙𝜙𝑥𝑥)𝑠𝑠�𝜙𝜙𝑦𝑦�𝑠𝑠(𝜙𝜙𝑧𝑧) − 𝑠𝑠(𝜙𝜙𝑥𝑥)𝑐𝑐(𝜙𝜙𝑧𝑧)
−𝑠𝑠�𝜙𝜙𝑦𝑦� 𝑠𝑠(𝜙𝜙𝑥𝑥)𝑐𝑐�𝜙𝜙𝑦𝑦� 𝑐𝑐(𝜙𝜙𝑥𝑥)𝑐𝑐�𝜙𝜙𝑦𝑦�

�

 (23) 
 

where 𝑠𝑠 and 𝑐𝑐 are the sine and cosine functions respectively. The wrist position (𝑃𝑃𝑤𝑤) can 
be found using [33]. 
𝑃𝑃𝑤𝑤 = 𝑃𝑃 − 𝑑𝑑6𝑎𝑎 (24) 

It is now possible to find the inverse kinematics for 𝜃𝜃𝑠𝑠. The first joint angle can be 
found using [33,34]. 

𝜃𝜃𝑠𝑠 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑃𝑃𝑤𝑤𝑤𝑤
𝑃𝑃𝑤𝑤𝑤𝑤

� (25) 

The computation of the inverse kinematics for 𝜃𝜃𝑙𝑙 and 𝜃𝜃𝑢𝑢 is both mathematically 
complex and computationally demanding. This is primarily due to the dependency 
between the 2nd  and 3rd  joint angles as warned in previews section (MOTOMAN's axis 
representation) and due to singularities and nonlinearities. Hence, we propose a RBF-
ANN neural network to solve the inverse kinematics for 𝜃𝜃𝑙𝑙 and 𝜃𝜃𝑢𝑢 [35]. 

 
Inverse Kinematics: Solving for 𝜽𝜽𝒍𝒍 and 𝜽𝜽𝒖𝒖 Using RBF Artificial Neural Network 

To solve the inverse kinematics for  𝜃𝜃𝑙𝑙 and 𝜃𝜃𝑢𝑢 of the MOTOMAN HP3 manipulator, 
we employ a Radial Basis Function Artificial Neural Network (RBF-ANN). The RBF-
ANN [36] consists of multiple layers: an input layer that forwards signals to the hidden 
layer, a hidden layer (or basis function layer) that typically uses functions such as the 
Gaussian function, and an output layer, which is usually a simple linear function. The 
RBF-ANN excels in local approximation, meaning that when input signals fall near the 
center of a basis function, the hidden layer produces a significant output [35, 36]. 

Using an ANN to study the inverse kinematics presents two main challenges: 
selecting an appropriate ANN type and generating a suitable training dataset. Considering 
calculation accuracy and training time, we adopt the network configuration illustrated in 
Figure (17), with a Gaussian function as the basis function. To achieve a closed-form 
solution and align with the joint ranges and desired workspace similar to [35], each joint 
angle range is defined as follows: 

 

−45∘  < 𝜃𝜃𝑠𝑠,𝜃𝜃𝑢𝑢, 𝜃𝜃𝑟𝑟 ,𝜃𝜃𝑏𝑏,𝜃𝜃𝑡𝑡 < 45∘ (26) 

50∘  < 𝜃𝜃𝑙𝑙 < 125∘ (27) 
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Figure 17: The structure of the RBF-ANN networks. 

 
We use the previously derived forward kinematics to iteratively calculate the end-

effector’s pose, 𝑇𝑇 = �𝑛𝑛𝑥𝑥,𝑛𝑛𝑦𝑦,𝑛𝑛𝑧𝑧, 𝑜𝑜𝑥𝑥, 𝑜𝑜𝑦𝑦, 𝑜𝑜𝑧𝑧, 𝑎𝑎𝑥𝑥,𝑎𝑎𝑦𝑦, 𝑎𝑎𝑧𝑧, 𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦�
𝑇𝑇
 corresponding to the given 

joint-space configuration, 𝑄𝑄 = [𝜃𝜃𝑙𝑙 ,𝜃𝜃𝑢𝑢]𝑇𝑇 (for the specified joint angle ranges). Thus, we 
get the training data set 𝑇𝑇 → 𝑄𝑄. The pose and orientation 𝑇𝑇 in homogeneous coordinates 
are used as the network's input and the joint angles 𝜃𝜃𝑙𝑙 and 𝜃𝜃𝑢𝑢 are used as the network's 
output. For the two joint angles, we have constructed two networks to compute each joint 
angle ( 𝜃𝜃𝑙𝑙 and 𝜃𝜃𝑢𝑢 ). Note that, certainly, the 6 elements of 𝑃𝑃 vectors can also be used as 
the networks input instead of the 12 elements of the 𝑇𝑇 vectors. 

We generated 7,776 training vectors ( 𝑇𝑇 ) for various random joint angles (within 
the specified range) and trained two networks, for which each output corresponds to a 
joint angle ( 𝜃𝜃𝑙𝑙 or 𝜃𝜃𝑢𝑢 ). We have also generated a separate testing data ( 𝑇𝑇 vectors and 
their corresponding 𝑄𝑄 vectors) that is comprised of 216 vectors. After training the two 
networks using the training data, we tested their ability to generalize using the testing 
data. The Mean Square Errors (ΔE) were found not to exceed 0.0157 and 0.0242 for 𝜃𝜃𝑙𝑙 
and 𝜃𝜃𝑢𝑢 respectively. 

We believe that it is instructive to note from other studies by Karlik and Aydin [37] 
investigated the inverse kinematics solution of a 6-DOF manipulator using ANNs and 
concluded that a Back Propagation (BP) network with two hidden layers and a single 
output neuron performs better than a network with one hidden layer and six output 
neurons. Additionally, Zhang [35] demonstrated that RBF-ANN networks provide higher 
computational accuracy than BP networks and exhibit faster convergence rates. 
Inverse Kinematics: Solving for 𝜽𝜽𝒓𝒓,𝜽𝜽𝒃𝒃 and 𝜽𝜽𝒕𝒕 Using Geometric and Analytic Methods 

After successfully solving for the first three joint angles, we can now solve for the 
remaining three joint angles (𝜃𝜃𝑟𝑟 ,𝜃𝜃𝑏𝑏 and 𝜃𝜃𝑡𝑡). To determine the necessary joint angles 
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𝜃𝜃𝑟𝑟 ,𝜃𝜃𝑏𝑏 and 𝜃𝜃𝑡𝑡 that correspond to the desired position and orientation of the end-effector, 
we simply take advantage of the previously computed joint angles ( 𝜃𝜃𝑠𝑠,𝜃𝜃𝑙𝑙 ,𝜃𝜃𝑢𝑢 ) and the 
special configuration of the last three joints. Because the orientation of the end-effector 
is defined by 𝑅𝑅60, it's simple to get 𝑅𝑅63. However, before finding 𝑅𝑅63, one needs to convert 
the computed joint angles as discussed (due to MOTOMAN's axis representation). In 
other words; 

𝜃𝜃1 = 𝜃𝜃𝑠𝑠 (28) 

𝜃𝜃2 = 𝜃𝜃𝑙𝑙 − 90∘ (29) 

𝜃𝜃3 = 𝜃𝜃𝑢𝑢 − 𝜃𝜃𝑙𝑙 + 90∘ (30) 
 

Then 𝑅𝑅63 can be easily computed as follows: 

𝑅𝑅63  = (𝑅𝑅50)−1𝑅𝑅60 = (𝑅𝑅50)𝑇𝑇𝑅𝑅60                                                                                                (31) 

𝑅𝑅63  = �
−𝑐𝑐1𝑠𝑠23 −𝑠𝑠1𝑠𝑠23 𝑐𝑐23
−𝑐𝑐1𝑐𝑐23 −𝑠𝑠1𝑐𝑐23 −𝑠𝑠23
𝑠𝑠1 −𝑐𝑐1 0

� × �
𝑛𝑛𝑥𝑥 𝑜𝑜𝑥𝑥 𝑎𝑎𝑥𝑥
𝑛𝑛𝑦𝑦 𝑜𝑜𝑦𝑦 𝑎𝑎𝑦𝑦
𝑛𝑛𝑧𝑧 𝑜𝑜𝑧𝑧 𝑎𝑎𝑧𝑧

� = �
𝑟𝑟11 𝑟𝑟12 𝑟𝑟13
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33

� (32) 

with 
𝑟𝑟11 = −𝑐𝑐1𝑠𝑠23𝑛𝑛𝑥𝑥 − 𝑠𝑠1𝑠𝑠23𝑛𝑛𝑦𝑦 + 𝑐𝑐23𝑛𝑛𝑧𝑧    ,     𝑟𝑟12 = −𝑐𝑐1𝑠𝑠23𝑜𝑜𝑥𝑥 − 𝑠𝑠1𝑠𝑠23𝑜𝑜𝑦𝑦 + 𝑐𝑐23𝑜𝑜𝑧𝑧 
𝑟𝑟13 = −𝑐𝑐1𝑠𝑠23𝑎𝑎𝑥𝑥 − 𝑠𝑠1𝑠𝑠23𝑎𝑎𝑦𝑦 + 𝑐𝑐23𝑎𝑎𝑧𝑧         , 𝑟𝑟21 = −𝑐𝑐1𝑐𝑐23𝑛𝑛𝑥𝑥 − 𝑠𝑠1𝑐𝑐23𝑛𝑛𝑦𝑦 − 𝑠𝑠23𝑛𝑛𝑧𝑧 
𝑟𝑟22 = −𝑐𝑐1𝑐𝑐23𝑜𝑜𝑥𝑥 − 𝑠𝑠1𝑐𝑐23𝑜𝑜𝑦𝑦 − 𝑠𝑠23𝑜𝑜𝑧𝑧 , 𝑟𝑟23 = −𝑐𝑐1𝑐𝑐23𝑎𝑎𝑥𝑥 − 𝑠𝑠1𝑐𝑐23𝑎𝑎𝑦𝑦 − 𝑠𝑠23𝑎𝑎𝑧𝑧 
𝑟𝑟31 = 𝑠𝑠1𝑛𝑛𝑥𝑥 − 𝑐𝑐1𝑛𝑛𝑦𝑦  , 𝑟𝑟32 = 𝑠𝑠1𝑜𝑜𝑥𝑥 − 𝑐𝑐1𝑜𝑜𝑦𝑦  ,  𝑟𝑟33 = 𝑠𝑠1𝑎𝑎𝑥𝑥 − 𝑐𝑐1𝑎𝑎𝑦𝑦 

 
where 𝑠𝑠23 and 𝑐𝑐23 are sin (𝜃𝜃2 + 𝜃𝜃3) and cos (𝜃𝜃2 + 𝜃𝜃3) respectively. It is now 

possible to obtain the solution for 𝜃𝜃𝑟𝑟 ,𝜃𝜃𝑏𝑏 and 𝜃𝜃𝑡𝑡 [33]. 

For 𝜃𝜃𝑏𝑏 ∈ [0,𝜋𝜋] the solution is 

𝜃𝜃𝑟𝑟 = atan �
𝑟𝑟33
𝑟𝑟13
�      ,   𝜃𝜃𝑏𝑏 = atan�

�𝑟𝑟132 + 𝑟𝑟332

−𝑟𝑟23
�       ,𝜃𝜃𝑡𝑡 = atan �

−𝑟𝑟22
𝑟𝑟21

� 

For 𝜃𝜃𝑏𝑏 ∈ [−𝜋𝜋, 0] the solution is 

𝜃𝜃𝑟𝑟 = atan �
−𝑟𝑟33
−𝑟𝑟13

�   ,𝜃𝜃𝑏𝑏 = atan�
�𝑟𝑟132 + 𝑟𝑟332

𝑟𝑟23
�   ,𝜃𝜃𝑡𝑡 = atan �

𝑟𝑟22
−𝑟𝑟21

� 

This concludes the process of solving the IK problem for the HP3 manipulator. 
 

EXPERIMENTAL RESULTS: INVERSE KINEMATICS OF HP3 
MANIPULATOR 

In this subsection, we present the accuracy of the inverse kinematics model and the 
solution derived in the previous subsection. Table (2) provides a summary of the 
performance of the proposed approach. The table shows the results for seven different 
and randomly acquired testing vectors (for the specified joint angle ranges but not seen 
by any of the two RBF-ANN networks). We have trained two different RBF-ANN neural 
networks for each joint angle ( 𝜃𝜃𝑙𝑙 ,𝜃𝜃𝑢𝑢 ). One operating with 300 neurons (RBF1) and the 
other operating with 650 neurons (RBF2). It is a known fact that the generalizability of 
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an RBF-ANN network depends not only on the training data but also on the specified 
spread ( 𝜎𝜎 ) and on the specified number of neurons [38-41]. 

A cross-validation analysis-trained on the training dataset and evaluated on the 
testing dataset-was conducted across various logarithmically spaced spread values to 
identify the optimal spread., 𝜎𝜎 = 650. It should be noted that increasing the spread results 
in a smoother function approximation. However, if the spread is too large, a greater 
number of neurons will be needed to accurately model a rapidly changing function [42–
44]. Conversely, a spread that is too small requires many neurons to fit even a smooth 
function, which can negatively affect the network’s ability to generalize. The effect of 
varying the number of neurons is illustrated in Table (4). It portrays that the 
approximation for the joint angles  (𝜃𝜃𝑙𝑙 ,𝜃𝜃𝑢𝑢) varies accordingly. RBF1 seems to be 
generalizing very well for small joint angle ranges and RBF2 appears to be the favored 
network for wider joint angle ranges. However, let it be known that we have observed the 
contrary for other examples/tests. All in all, based on these experimental results, one can 
safely presume that a plausible solution for the inverse kinematics of the MOTOMAN 
HP3 manipulator (for specific joint angles ranges) is indeed obtained. Note that such 
solution has been implemented in the MATLAB GUI as well [45-47]. 

 
Table 4: Inverse Kinematics solution experimental results for HP3 manipulator. RBF1 

utilizes 300 neurons and RBF2 utilizes 650 neurons. 

No  𝜃𝜃𝑠𝑠 𝜃𝜃𝑙𝑙 𝜃𝜃𝑢𝑢 𝜃𝜃𝑟𝑟 𝜃𝜃𝑏𝑏 𝜃𝜃𝑡𝑡 ΔE 

1 
Desired Value −10.23∘ 114.9∘ 32.26∘ 16.05∘ −6.83∘ 1.03∘  

IK (RBF1) −10.23∘ 114.88∘ 32.28∘ 16.01∘ −6.84∘ 1.07∘ 0.0212 
IK (RBF2) −10.23∘ 114.6∘ 32.45∘ 15.64∘ −7.0∘ 1.44∘ 0.2249 

2 
Desired Value 27.01∘ 110.8∘ 24.19∘ 4.44∘ −21.39∘ 14.02∘  

IK (RBF1) 27.01∘ 110.72∘ 24.22∘ 4.43∘ −21.42∘ 14.03∘ 0.0230 
IK (RBF2) 27.01∘ 110.9∘ 24.23∘ 4.43∘ −21.43∘ 14.03∘ 0.0311 

3 
Desired Value −30.05∘ 109.52∘ 8.25∘ −15.46∘ −21.79∘ 23.22∘  

IK (RBF1) −30.05∘ 109.58∘ 8.24∘ −15.47∘ −21.78∘ 23.22∘ 0.0158 
IK (RBF2) −30.05∘ 109.82∘ 8.11∘ −15.55∘ −21.66∘ 23.32∘ 0.1278 

4 
Desired Value −16.04∘ 65.93∘ −5.85∘ −8.64∘ 20.27∘ 2.29∘  

IK (RBF1) −16.03∘ 65.89∘ −5.85∘ −8.64∘ 20.27∘ 2.29∘ 0.008 
IK (RBF2) −16.03∘ 65.88∘ −5.95∘ −8.64∘ 10.36∘ 2.25∘ 0.054 

5 
Desired Value 41.84∘ 115.59∘ −34.92∘ −22.28∘ −21.13∘ −24.47∘  

IK (RBF1) 41.83∘ 115.63∘ −33.82∘ −21.2∘ −21.13∘ −24.47∘ 0.733 
IK (RBF2) 41.79∘ 115.01∘ −33.98∘ −22.03∘ −20.87∘ −24.12∘ 0.659 

6 
Desired Value −14∘ 57∘ 11.88∘ −4.21∘ −43.91∘ 8.96∘  

IK (RBF1) −14∘ 57.61∘ 11.51∘ −4.24∘ −43.54∘ 8.99∘ 0.236 
IK (RBF2) −14∘ 56.89∘ 12.02∘ −4.2∘ −44.01∘ 8.95∘ 0.229 

7 
Desired Value 27.85∘ 101.57∘ 7.66∘ 14.51∘ 22.92∘ 22.88∘  

IK (RBF1) 27.85∘ 101.39∘ 7.92∘ 14.67∘ 22.68∘ 22.72∘ 0.166 
IK (RBF2) 27.85∘ 101.67∘ 7.69∘ 14.53∘ 22.88∘ 22.85∘ 0.0366 
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The following subsections detail the network architecture, data generation, training 
procedure, and parameter selection to ensure reproducibility [48-50]. 
1. Network Input Vector Selection 

After preliminary testing, the input to the RBF-ANN was chosen as a 6-element 
pose vector derived from the position and orientation of the end-effector, defined as: 
Input = [px, py, pz, φx, φy, φz] T,  where [px, py, pz] is the end-effector position and [φx, φy, 
φz] are the Z-Y-X Euler angles extracted from the rotation matrix of the homogeneous 
transformation 𝑇𝑇06. This representation was selected over the full 12-element T-matrix 
vector to reduce redundancy and computational load, without a significant loss in 
accuracy for the specified workspace as shown in Figure (17). 
2. Training and Testing Data Generation 

A comprehensive dataset was generated using the forward kinematics model 
derived in previews section The joint angles θl and θu were varied within their specified 
ranges (50° < θl < 125° and -45° < θu < 45°), while the other joints (θs, θr, θb, θt) were 
randomly sampled from a uniform distribution within their ±45° range. 

To ensure even coverage of the joint space, a stratified grid sampling approach was 
used for θl and θu. The range of θl was divided into 15 intervals and θu into 12 intervals, 
creating a 15x12 grid. From each grid cell, 45 unique random samples of the other four 
joints were drawn, resulting in a total of 15 * 12 * 45 = 8,100 data points. After removing 
configurations leading to self-collisions or exceeding the physical workspace, the final 
training set consisted of 7,776 input-output pairs. A separate, entirely disjoint testing set 
of 216 vectors was generated using a different random seed to evaluate the network's 
generalization performance. 
3. RBF-ANN Architecture and Training Algorithm 

A separate RBF-ANN was constructed for each joint angle (θl and θu). Each 
network had the following structure: 

• Input Layer: 6 neurons (for the 6-element pose vector) 
• Hidden Layer: Comprised M RBF neurons. We investigated two configurations: RBF1 

with M=300 neurons and RBF2 with M=650 neurons 
• Output Layer: 1 linear neuron (providing the estimated joint angle) 

 
The training process involved the following steps for each network: 

• Center Selection (ci): The centers of the RBF neurons were established by applying the 
K-means clustering algorithm to the 7,776 training input vectors. This ensures the 
centers are representative of the data distribution in the input space. 

• Spread Calculation (σi): A common spread parameter σ was used for all neurons in a 
given network. The value was determined via k-fold cross-validation (with k=5) on the 
training set. The optimal value was found to be σ = 650, which produced the smoothest 
function approximation without overfitting. 

• Output Weight Calculation (wi): The output weights were computed using the pseudo-
inverse (least-squares) method. The hidden layer activation matrix H was constructed, 
where each element Hij is the output of the j-th Gaussian kernel for the i-th training 
sample. The output weights w was then calculated as w = (HT H)-1 HT y, where y is the 
vector of target joint angles from the training data. 
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CONCLUSION 
From a mathematical and set-theoretic perspective, the relationship between 

forward kinematics (FK) and inverse kinematics (IK) can be viewed as a nonlinear 
mapping between the robot manipulator’s joint space and its operational (Cartesian) 
space. This paper presents both the forward kinematics and a feasible solution for the 
inverse kinematics problem of the MOTOMAN HP3 manipulator. Forward kinematics, 
which maps joint space to Cartesian space in a one-to-one manner, is generally considered 
a straightforward task. The paper shows that by using the DH algorithm, it was possible 
to successfully obtain the exact transformation function. Unlike the FK problem, the 
inverse kinematics problem is a tricky one. This paper presents a hybrid method 
comprised of analytic and numerical approximation to solve the IK problem. This paper 
applies analytical/geometrical methods and two RBF-ANN networks that consist of 
twelve input neurons and one output neuron to solve the IK problem of the MOTOMAN 
manipulator. Considering the powerful ability of an Artificial Neural Network to process 
nonlinear mapping relations, we believe that it is extremely useful in approximating IK 
solutions for most complex industrial or commercial manipulators. For example, the 
DA10 manipulator does present 15 joints and hence an IK solution by an algebraic 
method is almost impossible. However, certain types of artificial neural networks (ANNs) 
are ideally suited for this problem, as they eliminate the need for the traditional, complex 
process of deriving equations and programming. Although the new/proposed IK solution 
appears promising, further tuning/optimization of the different RBF-ANN parameters 
(number of neurons and spread) could improve the overall accuracy of the results. A 
valuable area of future work would be to approximate a closed-form IK solution for a 
wider range of joint angles (instead of the ranges specified in this paper). In doing so, one 
is advised to augment the number of training vectors. Furthermore, different types of 
ANNs—such as Feedforward Backpropagation Networks (FFBN), Trainable Cascade-
Forward Backpropagation Networks (TCFBN), Generalized Regression Neural 
Networks (GRNN), or Probabilistic Neural Networks (PNN) can be employed depending 
on the specific inverse kinematics problem being addressed. 

FUTURE WORK 
• Integration with Trajectory Planning and Control: The kinematics model is the 

foundation for motion 
o Combine the kinematic model with the manipulator's dynamics to develop a 

dynamic control scheme (e.g., Computed Torque Control) for more accurate 
trajectory tracking under load 

• Calibration and Accuracy Improvement: Move from a theoretical model to a 
physically accurate one 

o Perform kinematic calibration to identify the actual DH parameters of a 
physical MOTOMAN HP3 robot, compensating for manufacturing 
imperfections 
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