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ABSTRACT

This paper provides a detailed study of the forward and inverse kinematics of the
MOTOMAN HP3, a 6-degree-of-freedom robotic manipulator. The forward kinematics
are derived using the Denavit—Hartenberg (DH) method to calculate the end-effector’s
position and orientation from the joint angles, and a MATLAB GUI is developed to
implement and validate the model. For inverse kinematics, a hybrid approach is proposed
that combines analytical methods with Radial Basis Function Artificial Neural Networks
(RBF-ANN) to overcome computational complexity and handle singularities. The first
joint angle is determined geometrically, the second and third angles are approximated via
RBF-ANN, and the remaining angles are computed analytically. Experimental results
confirm the accuracy of both models when compared with the MOTOMAN simulation
software, demonstrating their effectiveness for robotic applications.

KEYWORDS: Forward Kinematics, Inverse Kinematics, HP3 Manipulator, Denavit-
Hartenberg, MATLAB GUI, RBF-ANN.

INTRODUCTION

Kinematics examines the movement of objects without accounting for the forces or
torques responsible for that motion. In robotics, this involves the mathematical
examination of a manipulator's movement. Developing appropriate kinematic models is
essential for evaluating the performance of industrial robotic arms. Primarily includes
forward kinematics (FK) and inverse kinematics (IK). This end-effector's location and
pose based on the inverse kinematics (IK). FK influences the end-effector's location and
pose based on the manipulator's joint variables. This technique finds applications in
robotics, gaming, and computer animation. In contrast, IK presents greater challenges, as

Journal of Engineering Research ~ (University of Tripoli)  Issue (40) November 2025 55


mailto:a.abougarair@uot.edu.ly

it requires determining joint configurations given the end-effector's desired position
within the workspace. The literature highlights significant progress in IK techniques,
emphasizing their precision, speed, and suitability for arms like the MOTOMAN HP3.
Contemporary studies have investigated combined strategies to optimize accuracy
alongside real-time execution. Table (1) offers a critical summary of these methods,
identifying limitations in managing multi-degree-of-freedom systems and variable
environments. Positioning our integrated (analytical + RBF-ANN) technique amid these
developments highlights its innovation in tackling the HP3's unique issues, including
interdependent axes and motion constraints.

Table 1: Summarized abstract of literature review

Ref. Summarized Abstract
[1] Exploration of IK challenges for robotic arms.
[2] Industrial robots execute operations in structured settings.

[3] Utilization of MLFFNN for FK and IK in a 3-DOF arm.

[4] MLFFNN applied to manipulator FK and IK.
Dual scenarios for FK: focusing on coordinates or full pose.

[5] Emphasis on both FK and IK formulations.

[6] Integration of analytical and ANFIS approaches for motion evaluation.

[7] Offline-trained adaptive NN using LQOSEIC for initial weights, then online
adaptation via error feedback.

(8] Emphasis on open-chain kinematic evaluation. T-Matrix technique for tracking

[9] VAE framework covering FK, IK, and redundancy resolution.

terminal link displacement.
[10] Design of a 5-DOF wheeled robot enhancing operational range.

[11] Provision of FK and IK algorithms and - Evaluation of arm's operational volume.

[12] Handling of FK and IK for 3-PSP structures.

[13] Closed-form FK for 3-RPR configurations.

[14] 3RRR parallel arm modeling via GA and NN.

[15] PID-LQR hybrid controller for TWRM, enhancing response and steadiness.

[16] This study presents a robotic arm control system based on surface
electromyography (EMG) signals from forearm muscles.

[17] Generalized approach for 3RPS and 3RPS-R manipulators’ kinematics.

(18] AMPC system dynamically adjusts control parameters using sensor fusion data in
a 3-DOF bicycle model.

Examination of arm and structural kinematics and - Analytical closures for diverse

[19]

layouts.

[20] Vision-based robotic arm control using PD-PI1J kinematics.

[21] Kinematic analysis and simulation using DH parameters.

[22] Closed-form inverse kinematics for 5-DOF hybrid manipulator without geometry
assumptions.

(23] Surrogate model using VQTAM + K-means for IK. Combines LLR, LWR, and LLE

for improved prediction.

[24] Forward/inverse kinematics analyzed for 5-DOF manipulator using MATLAB.

[25] Review comparing different kinematic modeling techniques.

26] Hybrid intelligent control using LQRWFPI and supervised neural networks for
nonlinear systems.

[27] Robust robot control via SMC and Parallel PID-LQR strategies.
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This study details the FK and IK derivations for the 6-DOF MOTOMAN HP3 arm.
The structure proceeds as follows: An initial overview of the HP3 arm, followed by FK
and IK sections. The FK part begins with homogeneous transformations, then covers the
DH method, derives HP3 matrices, and includes angle-to-pulse conversions. A MATLAB
GUI supports this. Validation occurs via experiments. The IK section uses a blended
analytical-numerical strategy: geometric solution for 61, RBF-ANN for 62/63, and
analytical for 04-06. Results confirm efficacy. The conclusion summarizes and suggests
extensions [4].

THE HP3 MANIPULATOR

The MOTOMAN HP3 represents a compact, rapid-response robotic arm ideal for
space-constrained setups. As illustrated in Figure (1), it achieves a 701 mm arm span,
maximizing its operational area relative to peers. Its versatile mounting options—floor,
wall, or overhead—enhance adaptability. Optimized for precision tasks like component
assembly, fluid application, packing, transport, and equipment oversight, the HP3
delivers high throughput with low setup costs. Notably, Figure (1) reveals its six rotational
joints [28].
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Figure 1: The MOTOMAN HP3 Manipulator.
Advantages Over Competing Robots
Best reach-to-size ratio in its class (701 mm in a compact form). Faster cycle times
than comparable 3 kg payload robots. Multi-mounting flexibility (floor, wall, ceiling).

Seamless integration with vision systems, force sensors, and loT (Industry 4.0). Table (2)
presents the key attributes of the MOTOMAN HP3 arm.

Table 2: Key attributes of the MOTOMAN HP3 arm.

Parameter Specification
Robot Type 6-axis articulated (J1-J6, all revolute)
Payload Capacity 3 kg (maximum at full extension)
Repeatability +0.02 mm (extremely precise)
Weight ~ 27 kg (lightweight for easy integration)
IP Rating Standard: IP30 (optional IP67 for harsh environments)
Controller Compatible with Yaskawa DX100 or YRC1000
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FORWARD/DIRECT AND INVERSE KINEMATICS

As noted, manipulator kinematics splits into FK—straightforward with unique
solutions—and IK, which is more demanding due to computational demands,
singularities, and nonlinear effects. Complete closed-form IK exists only for select
geometries. Figure (2) diagrams this interplay.
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Figure 2: The diagram demonstration of forward and inverse kinematics.

Forward/Direct Kinematics

A robotic arm comprises interconnected segments joined by actuators. FK
calculates the terminal link's pose from joint inputs (angles or pulses). This involves
assigning frames to links and linking them via transformations.

Shifting between frames combines rotation and displacement. Common rotation
forms include Euler angles, though homogeneous 4x4 matrices prevail in robotics for
their compactness. Of these demonstrations, homogenous revolutions based on 4 X 4

actual matrices (orthonormal matrices) have been applied most frequently in robotics
[28].

Let g be a point in R3, and let F is an orthonormal coordinate frame for R3. If ¢ is
any nonzero scale factor, then the standardized coordinates of q with respect to F are
denoted [g]F and defined as [29,30]:

q1

_ qz
a1 = o QSI 0

1

Note that the homogeneous coordinates of the point g are represented by a vector
in fourdimensional space R*. Also, to note is that, in robotics, we usually manipulate a
scale factor ¢ = 1 for convenience.

If a physical point in 3D space is stated in terms of its homogeneous coordinates
and we want to change from one coordinate frame to another, we use a 4 X 4
homogeneous transformation matrix. In general, a homogeneous transformation matrix T
can be partitioned into four separate sub-matrices as follows [30]:

[

Here, the value ¢ in he bottom-right position of the T matrix represents a non-zero
o = 1, and for the purpose of kinematics modeling the vector n will always be s always
configured to the null vector [30].
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The 3 X 3 sub-matrix R positioned in the top-left area of the matrix T functions as
a rotation matrix [30]. R represents the orientation of the moveable coordinate frame with
respect to the fixed reference frame [30]. For instance, a T corresponding to rotations
about the x, y, or z axes by an angle 0 are [31]:

1 0 0 07

_ 10 cos(@) -—sin(8) O
RotCa O =10 sine) cos®) o0 )

L0 0 0 1

[ cos(8) 0 sin(@) O

_ 0 1 0 0
Rot»n 0 =1 _sine) 0 cos(e) 0 )

L 0 0 0 1

[cos(8) —sin(@) 0 O

_|sin(6) cos(8) 0 O
Rot(z,6) = |°7 o 1 0 ()

0 0 0 1.

The 3 X 1 column vector P located in the upper-right corner of matrix TTT, serves
as the translation vector. It specifies the location of the moving coordinate frame’s origin
with respect to the fixed reference frame [30]. For instance, a transformation that
translates by the vector ai + bj + ck can be expressed as [31]:

1 0 0 «a
Tran(a,b,c) = 8 é (1) lc) (6)
0 0 0 1

Denavit and Hartenberg Algorithm

FK relies on joint readings and arm geometry. The DH convention standardizes this
with four parameters per link: The four parameters are:a;_; (link length), a;_; (link
twist), d; (link offset) and 6; (joint angle) aligns with joint motion. As in Figure (3), ai
along X;, a; around X;, di along Z;_,, 6; around Z;_; [32].

For each joint i(i = 1,2,...,n). a coordinate frame is assigned to define the
Denavit-Hartenberg (DH) parameters. The Z; axis of each frame is oriented along the
axis of rotation or translation of the corresponding joint. To clarify this concept, Figure
(3) provides an example illustrating how coordinate frames are assigned for a general
manipulator.
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Figure 3: Coordinate frame assignment for a general manipulator.
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As illustrated in Figure (3), the distance between Z;_; and Z; measured along the
X(i-1) axis is denoted by a;_;, the angle between Z;_; and Z; measured about the X; axis
s represented by «;_,. Similarly, the distance from X;_; to X; measured along the Z; axis
is defined as d; and the angle between X;_; to X; measured about Z; is denoted by 6; [32].

The general transformation matrix Tii"l for an individual link can then be expressed
as follows:

T}™' = Rot(x, a;_,)Tran(a;_;,0,0)Rot(z, 8,)Tran(0,0,d;) (7)
1 0 0 0 1 0 O a;_q C(Bi) —S(Hi) 0 0
pict = |0 clai) —s(@i) O] 0 1 0 0 |, [=s(6) c(@6) 0 0
: 0 s(aj_y) cla;_y) 0 0 01 0 0 0 10
0 0 0 1 0 0 O 1 0 0 0 1
1 0 0 O
0 1 0 O
“lo 0 1 4
0 0 0 1
c(0;) —s(0;) 0 ai-1
ri-1 = |SB@)c(ai—1) c@)c(ai) —s(a;-1) —s(a;i-1)d; ©
l
s(@)s(ai—1) c(@)s(ai-)  cla_q) c(ai—1)d;
0 0 0 1

Here ¢(6;) and s(6;) are abbreviations for cos(8;) and sin(6;), respectively. The
forward kinematics of the end-effector relative to the base frame is obtained by taking the
product of all individual transformation matrices T}~ matrices [30-32]. In other words,

end-effector _ 01 n—-1
Tbase - Tl TZ Tn (9)

Forward Kinematics of the HP3 Manipulator Using the DH Algorithm

In this subsection, the required coordinate frames will be established, derive the
DH parameters, and substitute the according values into the T matrices for the HP3
manipulator so as to obtain the general transformation matrix Tnd-efector To facilitate the
calculation of the T matrices, we will form a table of joint and link parameters whereby
the values representing each link and joint are determined from the schematic drawing of
the robot, and are substituted in each T matrix. That being said, by simply inspecting the
link frame assignment schematic drawing (shown in Figure (4)) and the various
corresponding engineering dimensions of the HP3 manipulator illustrated in Figure (5) in
millimeters, one can easily derive the four DH parameters/values for each link and joint
using the DH method explained in next section [33].
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Figure 4: The HP3 Manipulator: link frame assignment schematic (for home position).
Note that all dimensions are in millimeters.
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Figure 5: The HP3 Manipulator (home position): side-view with various engineering
dimensions in millimeters.

The Denavit-Hartenberg (DH) parameters for each link of the HP3 manipulator are
presented in Table (3), In this table 0; is the joint angle, d; denotes the joint offset, a;_4
s the link length, and «;_; is the link twist. It is important to note that, for revolute joints
(as in this case), a;_4, @;_1, d; remain constant, while 6; serves as the joint variable for
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each joint i(i = 1,2, ...,6). Based on the information depicted in Table (1) and using the
general definition of the transformation matrix T/~ has been derived, it becomes
straightforward to calculate each link’s transformation matrix as a function of its
respective joint variable or angle (6;) as shown below:

c(0,) —-s,) 0 0

_|s6,) ¢, 0 O
o) = [F@0 <) 00 (10)
0 0 0 1
C(Qz) _3(92) 0 aq

T1(0,) = s(@z)c(ar) c(Ox)c(a;) —s(a) —s(ay)d,
2 s(02)s(ay) c(0r)s(ay)  c(ay) c(ay)d,

0 0 0 1
c(8,) -s(6,) 0 100
0 0 -1 0
s8) c@) 0 0 b
0 0 0 1

Table 3: DH parameters for HP3 Manipulator (Note that all angles are in degrees and
dimensions are in millimeters. Also, note that 8, = 90° portrays the home position of the

manipulator).
Axis | Link(1i) 0; a;_q a_1 | d; Joint Range Max Speed
S 1 0,(0°) 0° 0 0 170°to —170° | 210°/s
L 2 6,(90°) [ 90° 100 0 150° to —45° 180°/s
U 3 05(0°) 0° 290 0 210° to —142° | 225°/s
R 4 6,(0°) 90° 85 300 | 190°to —190° | 375°/s
B 5 05(0°) —-90° 0 0 125°to —125° | 375°/s
T 6 0¢(0°) 90° 0 90 360° to —360° | 500°/s
c(83) —s(65) 0 a, [c(8;) —s(B3) 0 290
T2(6,) = s(03)c(ay) c(B3)c(az) —s(az) —s(ay)ds — s@@3) (@) 0 0 (12)
s(@3)s(az) c(03)s(ay) c(ay) c(az)d; 0 0 1 0
0 0 0 1 L 0 0 0 1
c(64) —s(04) 0 a; | [c(6,) —s(6,) O 85
T3(94) — s(0)c(as) c(Oy)c(az) —s(az) —s(az)d, — 0 0 -1 -300 (13)
' sODs(@s) c@)s(az)  cla)  cla)d, | [s(Ba) () 0 0
L 0 0 0 1 i L 0 0 0 1
(13)
c(6s) —s(8s) 0 a, | [ c(6s) —s(@Bs) 0 O
TH6,) = s(@s)c(ay) c(@s)c(ay) —s(a) —s(a)ds|_ | 0 0 10 (14)
s(0s)s(ay) c(Bs)s(ay) clay) c(ay)ds —s(0s) —c(@s) 0 0
L 0 0 0 1 . L 0 0 0 1
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c(66) —s(8s) 0 as c(@s) —s(6s) O 0

T5(0,) = s@c)c(as) c(B)c(as) —s(as) —s(as)dg | 0 0 -1 =90 (15)
0T T Is(8g)s(as) c(Bg)s(as)  clas)  clas)ds | [s(Bs) c(B) O 0O
0 0 0 1 0 0 0 1

As mentioned in above section, the forward kinematics of the end-effector with

respect to the base frame is determined by multiplying those six transformation matrices
[30-32].

Tend-effector — T(? — T10T21T32T43T54-T65 (16)

base

The total transformation in terms of all of the joint angles/variables can be
alternatively represented as

nx Ox ax px

0 Dy

n a
T g:scé-eﬁector — T(? . y Yy a7
ng 0z Qz Py
0 0 0 1

with,

n, = ((5154 — €1573C4)C5 — C1C23SS)C6 + (€152354 + 51€4)S6

n, = ((_51523C4 — €184)Cs — 51C2355)56 + (5152354 — €1€4)S6

N, = (€23€4C5 — S2355)C6 — 235456

0x = (=514 + €1523€4)C5 + €1C2355)56 + (152354 + 51€4)C6

0y = ((31523C4 + c184)cs + SICZBSS)SB + (5152354 — €1€4)C6

0, = (—C23€4C5 + 52355)S6 — C235456

Ay = (—C€1523C4 + 5154)S5 + €1C23Cs

ay = (—=51523C4 = €154)S5 + $123C5

Az = C23C4C5 + S3Cs

Px = ((—C1523Cs + 5154)S5 + €1C23C5)dg + daCiCo3 — A3C1S23 — AC1 Sz + Aaly
Py = ((_51523C4 — C154)S5 + 51C23C5)d6 + dyS1C23 — A3C1S23 — A2€15; + a1y
Dz = (€23€4Ss + 5p3¢5)dg + duSp3 + a3c3 + ayc,

where ¢; and s; are the short hands of cos(8;) and sin(6;), respectively and c;;, and s;;

are the short hands for cos(@i + Hj) and sin(Hi + 9]-), respectively. Then the position of
the end effector in base/Cartesian coordinates can be represented as:

Px
P = [Py (18)
12
and the corresponding Euler angles can be obtained using equations 19, 20, and 21.
n
¢, = atan (n—z) (19)
_n,
¢y = atan (nxcos(¢z)+nysin(¢z)) (20)
_ axsin(¢z)—aycos(¢pz)
¢x = atan <oycos(¢z>—oxsin(¢z>) 1)

where atan is the arctangent function [35].
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EXPERIMENTAL RESULTS: FORWARD KINEMATICS OF HP3
MANIPULATOR

A user-friendly MATLAB GUI executes the outlined FK. Users input DH values
(Figure (6) for HP3), select angles/pulses, compute T, and extract Euler. Validation across
five cases matches MotoSim EG: Home (Figures (7,8)), Second Home (Figures (9,10)),
and three random (11-16). Identical outputs confirm model reliability.

Pressing the button "Export" will initialize all required parameters for the
subsequent process of the interface. Next, the user can either specify the joint angles:
0,,0,,0,,0,,0, and 6, or the equivalent pulse counts: pulse , pulse ;, pulse ,, pulse .,
pulse j, and pulse ; using a radio button. Afterwards, by pressing the button "Forward",
the user can obtain the total transformation matrix TEndeffecr = 79 The last column of
the matrix represents the position of the end effector in base/Cartesian coordinates. Note
that the GUI will automatically provide the equivalent joint angles and/or pulse counts
depending on the type of the specified input arguments (joint angles or pulse counts).
Finally, clicking on the button "Euler angles" yields the corresponding Euler angles. We
have checked the functionality and the accuracy of our work/GUI for five different
trials/tests and compared the results to that of Motoman Simulation Program (MotoSim
EQG) outputs. The first trial corresponds to the Home Position of the HP3 manipulator
(6, =0°6,=90°6, =0°0,=0°6, =0° and 6, = 0° or equivalently pulse ¢ = 0,
pulse ; =0, pulse , =0, pulse , =0, pulse , =0 and pulse ; =0 ). Figure (7)
illustrates the position and orientation of the end effector in base/Cartesian coordinates
and the corresponding pulse counts and joint angles for the Home Position of the HP3
manipulator using MotoSim. Figure (8) depicts the result of the MATLAB GUI for the
same pulse counts or joint angles (Home Position). The position and orientation of the
end-effector in base/Cartesian coordinates shown in both figures are indeed one and the
same; which in turn prove the correctness of the proposed mathematical model for the
forward kinematics of the manipulator at hand.

B HP3 data =)

PR Ty —— CEEY vy Py

Figure 6: MATLAB GUI: specification of DH parameters for the HP3 manipulator.
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Figure 7: MotoSim EG: HP3's manipulator home position (Test 1).
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Figure 8: MATLAB GUI: HP3's manipulator home position (Test 1).

Similarly, Figure (9) and Figure (10) show comparison of the results for the Second
Home Position of the HP3 manipulator ( 85 = 0°, 60, = 90°,0,, = 0°,0,, = 0°,8, = —90°
and 6; = 0° or equivalently pulse ¢ = 0, pulse ; = 0, pulse ,, = 0, pulse ,. = 0, pulse
p» = —81900 and pulse ; = 0). The last three tests/comparisons (Figure (11) and Figure
(12), Figure (13) and Figure (14), Figure (15) and Figure (16)) show the forward
kinematics results for arbitrary joint angles and/or pulse counts. Based on all of the
experimental results presented in this sub-section, one can rest assured that the
functionality of the proposed forward kinematics process/algorithm/GUI for the HP3
manipulator is indeed correct.
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Inverse Kinematics

IK computes joint values from end-pose, vital for planning and control, yet
complicated by interdependencies, multiplicities, and singularities. Structure dictates
solvability. Here, we blend analytical (geometric for 1) and numerical (RBF-ANN for
02/03) with analytical for 64-06. n this paper, a hybrid approach combining two primary
methods is proposed to solve the inverse kinematics problem of the HP3 manipulator.
The analytical method determines the joint variables through analytical and geometric
relationships based on the given configuration data, while the numerical method employs
function approximation using a Radial Basis Function (RBF) Artificial Neural Network
(ANN)).

Inverse Kinematics: Solving for 8 Using Geometric and Analytic Methods

A simple strategy can be used to solve the inverse kinematics of the first joint angles
(6,) by first deriving the position of the wrist (depicted in Figure (4) as P,, ). Let the
position and orientation of the end effector in Base/Cartesian coordinates be given as P =
[px, Dy, Dz Px» Dy ¢Z]T (as depicted in Figure (4)). The corresponding orientation matrix
R? for the given Euler angles ¢, ¢, and ¢, can be shown as follows [31].

Ny Ox Ay

R(6) = Euler(qu: ¢y: ¢z) = [ny 03/ a)’] = [Tl 0 a] (22)
n, o0, Q,
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RO =
c(py)c(@r)  s(@)s(Py)c(@,) — c(d)s(p,)  c(dr)s(dy)c(d,) + s(@)s(,)
c(py)s(d)  s(@)s(dy)s(@,) + c(p)c(@,)  c(@)s(dy)s(@,) — s(d)c(d,)

_S(¢y) 5(¢x)c(¢y) C(¢x)c(¢y)
(23)

where s and c are the sine and cosine functions respectively. The wrist position (B,) can
be found using [33].

P, =P —dsa (24)

It is now possible to find the inverse kinematics for ;. The first joint angle can be
found using [33,34].

0, = atan (%) (25)

The computation of the inverse kinematics for 6; and 8,, is both mathematically
complex and computationally demanding. This is primarily due to the dependency
between the 2"¢ and 3™ joint angles as warned in previews section (MOTOMAN's axis
representation) and due to singularities and nonlinearities. Hence, we propose a RBF-
ANN neural network to solve the inverse kinematics for 8; and 8,, [35].

Inverse Kinematics: Solving for 6, and 0,, Using RBF Artificial Neural Network

To solve the inverse kinematics for 8; and 6,, of the MOTOMAN HP3 manipulator,
we employ a Radial Basis Function Artificial Neural Network (RBF-ANN). The RBF-
ANN [36] consists of multiple layers: an input layer that forwards signals to the hidden
layer, a hidden layer (or basis function layer) that typically uses functions such as the
Gaussian function, and an output layer, which is usually a simple linear function. The
RBF-ANN excels in local approximation, meaning that when input signals fall near the
center of a basis function, the hidden layer produces a significant output [35, 36].

Using an ANN to study the inverse kinematics presents two main challenges:
selecting an appropriate ANN type and generating a suitable training dataset. Considering
calculation accuracy and training time, we adopt the network configuration illustrated in
Figure (17), with a Gaussian function as the basis function. To achieve a closed-form
solution and align with the joint ranges and desired workspace similar to [35], each joint
angle range is defined as follows:

—45° < 6,,0,,0,,0,,0, < 45° (26)
50° < 9, < 125° 27)
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Figure 17: The structure of the RBF-ANN networks.

We use the previously derived forward kinematics to iteratively calculate the end-
effector’s pose, T = [nx, Ny, Ny, Oy, 0y, 0z, Gy, Ay, Ay, Dy, py]T corresponding to the given
joint-space configuration, Q = [6,,0,]7 (for the specified joint angle ranges). Thus, we
get the training data set T — Q. The pose and orientation T in homogeneous coordinates
are used as the network's input and the joint angles 6; and 6,, are used as the network's
output. For the two joint angles, we have constructed two networks to compute each joint
angle ( 6, and 6,, ). Note that, certainly, the 6 elements of P vectors can also be used as
the networks input instead of the 12 elements of the T vectors.

We generated 7,776 training vectors ( T ) for various random joint angles (within
the specified range) and trained two networks, for which each output corresponds to a
joint angle ( 8; or 8, ). We have also generated a separate testing data ( T vectors and
their corresponding Q vectors) that is comprised of 216 vectors. After training the two
networks using the training data, we tested their ability to generalize using the testing
data. The Mean Square Errors (AE) were found not to exceed 0.0157 and 0.0242 for 6,
and 6, respectively.

We believe that it is instructive to note from other studies by Karlik and Aydin [37]
investigated the inverse kinematics solution of a 6-DOF manipulator using ANNs and
concluded that a Back Propagation (BP) network with two hidden layers and a single
output neuron performs better than a network with one hidden layer and six output
neurons. Additionally, Zhang [35] demonstrated that RBF-ANN networks provide higher
computational accuracy than BP networks and exhibit faster convergence rates.

Inverse Kinematics: Solving for 6,., 8, and 0, Using Geometric and Analytic Methods
After successfully solving for the first three joint angles, we can now solve for the
remaining three joint angles (6,8, and 6;). To determine the necessary joint angles
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0., 0, and 6, that correspond to the desired position and orientation of the end-effector,
we simply take advantage of the previously computed joint angles ( 6, 8, 0,, ) and the
special configuration of the last three joints. Because the orientation of the end-effector
is defined by R, it's simple to get R3. However, before finding R, one needs to convert
the computed joint angles as discussed (due to MOTOMAN's axis representation). In
other words;

0, = 6, (28)
6, = 6, — 90° (29)
6; = 6, — 6, +90° (30)

Then R2 can be easily computed as follows:

3 _ 0\-1p0 _ O\T pO

R} = (R9)™RY = (RYTRY (31)
—C1S23 —S51S23 (23 Ny Oy Ay 11 T2 T3

R} =|—C1C23 —S51C23 —Sa3|x|Ny 0y Qy| =121 T2z T23 (32)

S1 -G 0 ny 0z Qg 31 T3z T33

with

711 = —C1S23My — S1S23My + Ca3N, , Ty = —C1S230x — S1S230y + €230,

Ty3 = —C1S5230y — S1S230y + €230, , T21 = —C1C23My — S1C23My, — Sp3N,

T22 = —C1C230x — §1€230y — S230; ,T23 = —C1C30x — S1C23Ay — S230,

T31 = Slnx - Clny , T32 = S]_Ox - C]_Oy ) T33 = Slax - Clay

where s,; and c,5 are sin(6, + 0;) and cos(6, + 85) respectively. It is now
possible to obtain the solution for 8,., 8, and 6, [33].

For 8, € [0, ] the solution is

2 2
T VIS T -
6, = atan (ﬁ) , 8, = atan <M> ,0; = atan( 22)

T13 —T23 21
For 8, € [—m, 0] the solution is

2 2
- VIS T T
0, = atan( 33) ,0, = atan <M> ,0; = atan( 22 )

—T13 23 —T21
This concludes the process of solving the IK problem for the HP3 manipulator.

EXPERIMENTAL RESULTS: INVERSE KINEMATICS OF HP3
MANIPULATOR

In this subsection, we present the accuracy of the inverse kinematics model and the
solution derived in the previous subsection. Table (2) provides a summary of the
performance of the proposed approach. The table shows the results for seven different
and randomly acquired testing vectors (for the specified joint angle ranges but not seen
by any of the two RBF-ANN networks). We have trained two different RBF-ANN neural
networks for each joint angle ( ;, 8,, ). One operating with 300 neurons (RBF1) and the
other operating with 650 neurons (RBF2). It is a known fact that the generalizability of
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an RBF-ANN network depends not only on the training data but also on the specified
spread ( o ) and on the specified number of neurons [38-41].

A cross-validation analysis-trained on the training dataset and evaluated on the
testing dataset-was conducted across various logarithmically spaced spread values to
identify the optimal spread., ¢ = 650. It should be noted that increasing the spread results
in a smoother function approximation. However, if the spread is too large, a greater
number of neurons will be needed to accurately model a rapidly changing function [42—
44]. Conversely, a spread that is too small requires many neurons to fit even a smooth
function, which can negatively affect the network’s ability to generalize. The effect of
varying the number of neurons is illustrated in Table (4). It portrays that the
approximation for the joint angles (6;,6,) varies accordingly. RBF1 seems to be
generalizing very well for small joint angle ranges and RBF2 appears to be the favored
network for wider joint angle ranges. However, let it be known that we have observed the
contrary for other examples/tests. All in all, based on these experimental results, one can
safely presume that a plausible solution for the inverse kinematics of the MOTOMAN
HP3 manipulator (for specific joint angles ranges) is indeed obtained. Note that such
solution has been implemented in the MATLAB GUI as well [45-47].

Table 4: Inverse Kinematics solution experimental results for HP3 manipulator. RBF1
utilizes 300 neurons and RBF2 utilizes 650 neurons.

No 0, 0, 0, 0, 0, 0, AE
Desired Value | —10.23° | 114.9° | 32.26° | 16.05° | —6.83° | 1.03°
1 | IK(RBFl) | —10.23° | 114.88° | 3228° | 16.01° | —6.84° | 1.07° | 0.0212
IK (RBF2) | —10.23° | 114.6° | 32.45° | 15.64° | —7.0° | 144° |02249

Desired Value 27.01° 110.8° 24.19° 4.44° —21.39° | 14.02°
2 IK (RBF1) 27.01° | 110.72° | 24.22° 4.43° —21.42° | 14.03° | 0.0230

IK (RBF2) 27.01° 110.9° 24.23° 4.43° —21.43° | 14.03° | 0.0311
Desired Value | —30.05° | 109.52° 8.25° —15.46° | —21.79° | 23.22°

3 IK (RBF1) —30.05° | 109.58° 8.24° —15.47° | —21.78° | 23.22° | 0.0158
IK (RBF2) —30.05° | 109.82° 8.11° —15.55° | —21.66° | 23.32° | 0.1278
Desired Value | —16.04° | 65.93° | —5.85° | —8.64° 20.27° 2.29°
4 IK (RBF1) —16.03° | 65.89° | —5.85° | —8.64° 20.27° 2.29° 0.008
IK (RBF2) —16.03° | 65.88° | —5.95° | —8.64° 10.36° 2.25° 0.054
Desired Value 41.84° | 115.59° | —34.92° | —22.28° | —21.13° | —24.47°
5 IK (RBF1) 41.83° | 115.63° | —33.82° | —21.2° | —21.13° | —24.47° | 0.733
IK (RBF2) 41.79° | 115.01° | —33.98° | —22.03° | —20.87° | —24.12° | 0.659
Desired Value —14° 57° 11.88° —4.21° | —43.971° 8.96°
6 IK (RBF1) —14° 57.61° 11.51° —4.24° | —43.54° 8.99° 0.236
IK (RBF2) —14° 56.89° 12.02° —4.2° | —44.01° 8.95° 0.229

Desired Value 27.85° | 101.57° 7.66° 14.51° 22.92° 22.88°
7 IK (RBF1) 27.85° | 101.39° 7.92° 14.67° 22.68° 22.72° | 0.166
IK (RBF2) 27.85° | 101.67° 7.69° 14.53° 22.88° 22.85° | 0.0366
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The following subsections detail the network architecture, data generation, training
procedure, and parameter selection to ensure reproducibility [48-50].

1. Network Input Vector Selection

After preliminary testing, the input to the RBF-ANN was chosen as a 6-element
pose vector derived from the position and orientation of the end-effector, defined as:
Input = [px, Py, Pz Px, Py, Pz] ', where [px, py, pz] is the end-effector position and [¢x, @y,
@] are the Z-Y-X Euler angles extracted from the rotation matrix of the homogeneous
transformation T§. This representation was selected over the full 12-element T-matrix
vector to reduce redundancy and computational load, without a significant loss in
accuracy for the specified workspace as shown in Figure (17).

2. Training and Testing Data Generation

A comprehensive dataset was generated using the forward kinematics model
derived in previews section The joint angles 01 and 6u were varied within their specified
ranges (50° < 01 < 125° and -45° < Bu < 45°), while the other joints (0s, 0r, Ob, 6t) were
randomly sampled from a uniform distribution within their +45° range.

To ensure even coverage of the joint space, a stratified grid sampling approach was
used for 01 and Bu. The range of 01 was divided into 15 intervals and 6u into 12 intervals,
creating a 15x12 grid. From each grid cell, 45 unique random samples of the other four
joints were drawn, resulting in a total of 15 * 12 * 45 = 8,100 data points. After removing
configurations leading to self-collisions or exceeding the physical workspace, the final
training set consisted of 7,776 input-output pairs. A separate, entirely disjoint testing set
of 216 vectors was generated using a different random seed to evaluate the network's
generalization performance.

3. RBF-ANN Architecture and Training Algorithm
A separate RBF-ANN was constructed for each joint angle (61 and 6u). Each
network had the following structure:

e Input Layer: 6 neurons (for the 6-element pose vector)

o Hidden Layer: Comprised M RBF neurons. We investigated two configurations: RBF1

with M=300 neurons and RBF2 with M=650 neurons
e Output Layer: 1 linear neuron (providing the estimated joint angle)

The training process involved the following steps for each network:

o Center Selection (ci): The centers of the RBF neurons were established by applying the

K-means clustering algorithm to the 7,776 training input vectors. This ensures the
centers are representative of the data distribution in the input space.

Spread Calculation (ci): A common spread parameter ¢ was used for all neurons in a
given network. The value was determined via k-fold cross-validation (with k=5) on the
training set. The optimal value was found to be ¢ = 650, which produced the smoothest
function approximation without overfitting.

Output Weight Calculation (wi): The output weights were computed using the pseudo-
inverse (least-squares) method. The hidden layer activation matrix H was constructed,
where each element Hij is the output of the j-th Gaussian kernel for the i-th training
sample. The output weights w was then calculated as w = (HT H)! HT y, where y is the
vector of target joint angles from the training data.
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CONCLUSION

From a mathematical and set-theoretic perspective, the relationship between
forward kinematics (FK) and inverse kinematics (IK) can be viewed as a nonlinear
mapping between the robot manipulator’s joint space and its operational (Cartesian)
space. This paper presents both the forward kinematics and a feasible solution for the
inverse kinematics problem of the MOTOMAN HP3 manipulator. Forward kinematics,
which maps joint space to Cartesian space in a one-to-one manner, is generally considered
a straightforward task. The paper shows that by using the DH algorithm, it was possible
to successfully obtain the exact transformation function. Unlike the FK problem, the
inverse kinematics problem is a tricky one. This paper presents a hybrid method
comprised of analytic and numerical approximation to solve the IK problem. This paper
applies analytical/geometrical methods and two RBF-ANN networks that consist of
twelve input neurons and one output neuron to solve the IK problem of the MOTOMAN
manipulator. Considering the powerful ability of an Artificial Neural Network to process
nonlinear mapping relations, we believe that it is extremely useful in approximating IK
solutions for most complex industrial or commercial manipulators. For example, the
DA10 manipulator does present 15 joints and hence an IK solution by an algebraic
method is almost impossible. However, certain types of artificial neural networks (ANN5s)
are ideally suited for this problem, as they eliminate the need for the traditional, complex
process of deriving equations and programming. Although the new/proposed IK solution
appears promising, further tuning/optimization of the different RBF-ANN parameters
(number of neurons and spread) could improve the overall accuracy of the results. A
valuable area of future work would be to approximate a closed-form IK solution for a
wider range of joint angles (instead of the ranges specified in this paper). In doing so, one
is advised to augment the number of training vectors. Furthermore, different types of
ANNs—such as Feedforward Backpropagation Networks (FFBN), Trainable Cascade-
Forward Backpropagation Networks (TCFBN), Generalized Regression Neural
Networks (GRNN), or Probabilistic Neural Networks (PNN) can be employed depending
on the specific inverse kinematics problem being addressed.

FUTURE WORK
o Integration with Trajectory Planning and Control: The kinematics model is the
foundation for motion
o Combine the kinematic model with the manipulator's dynamics to develop a
dynamic control scheme (e.g., Computed Torque Control) for more accurate
trajectory tracking under load
o Calibration and Accuracy Improvement: Move from a theoretical model to a
physically accurate one
o Perform kinematic calibration to identify the actual DH parameters of a
physical MOTOMAN HP3 robot, compensating for manufacturing
imperfections

REFERENCES

[1] Fouz, M. and Rezeka, S. (2013). Neural-networks-based inverse kinematics for a
robotic manipulator, 157 International Conference on Aerospace Sciences &
Aviation Technology, ASAT, 1-18. doi:10.21608/ASAT.2013.22084.

[2] Ari, M. and Mondada, F. (2018). Kinematics of a robotic manipulator, in Book
Chapter, doi: 10.1007/978-3-319-62533-1_16.

Journal of Engineering Research (University of Tripoli)  Issue (40) November 2025 74



[10]

[11]

[12]

[13]

[14]

[15]

[16]

Jha, P. (2015). Inverse kinematic analysis of robot manipulators, PhD thesis,
National Institute of Technology Rourkela, India.

Sharkawy, A. and Khairullah, S. (2023). Forward and inverse kinematics solution
of a 3-DOF articulated robotic manipulator using artificial neural network,
International  Journal of Robotics and Control Systems, 3(2). doi:
10.31763/ijrcs.v3i2.1017.

Sharkawy, A. (2022). Forward and inverse kinematics solution of a robotic
manipulator using a multilayer feedforward neural network, Journal of Mechanical
and Energy Engineering, 6(2). doi: 10.30464/jmee.00300.

Virgala, 1. and Prada, E. (2020). Kinematics of serial manipulators, in Book
Chapter, Jul. 2020. doi: 10.5772/INTECHOPEN.93138.

Abougarair, A., Aburakhis, M., & Edardar, M. (2022). Adaptive neural networks
based robust output feedback controllers for nonlinear systems, International
Journal  of  Robotics and  Control  Systems, 2(1), 37-56. doi:
https://doi.org/10.31763/ijrcs.v2i1.523.

Hroncova, D., Mikova, L., Prada, E., Rakay, R., Jan Sincak P. and Merva, T. (2022).
Forward and inverse robot model kinematics and trajectory planning, 20"
International Conference on Mechatronics - Mechatronika, Pilsen, Czech
Republic, 1-9. doi: 10.1109/ME54704.2022.9983355.

Yoshimitsu, Y. and Ikemoto, S. (2023). Forward/inverse kinematics modeling for
tensegrity manipulator based on goal-conditioned variational autoencoder, in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS). doi:
10.1109/IROS55552.2023.10341525.

Buzkhar, I. and et al. (2023). Modeling and Control of a Two-Wheeled Robot
Machine with a Handling Mechanism, 2023 [EEE 3rd International Maghreb
Meeting of the Conference on Sciences and Techniques of Automatic Control and
Computer  Engineering  (MI-STA2023), Libya. doi. 10.1109/MI-
STAS57575.2023.10169424.

Antonov, A. and Glazunov, V. (2021). Inverse and forward kinematics and
workspace analysis of a novel 5-DOF (3T2R) parallel-serial (hybrid) manipulator,
International  Journal of Advanced Robotic  Systems, 18(2). doi:
10.1177/1729881421992963.

Enev, S. (2024). Direct and inverse kinematics solutions of a particular type of 3-
PSP parallel manipulator, IOP Conference Series: Materials Science and
Engineering, 1317(1). doi: 10.1088/1757-899X/1317/1/012007.

Saleem, M. and Khan, A. (2024). Analytical kinematics framework for the control
of a parallel manipulator - A generalized kinematics framework for parallel
manipulators, In Proceedings of the 6" International Conference on Informatics in
Control, Automation and Robotics, 1: ICINCO, ISBN 978-989-674-000-9, pages
280-286. doi: 10.5220/0002214102800286.

Samartin J. and Barrientos, A. (2023). Kinematic modelling of a 3RRR planar
parallel robot using genetic algorithms and neural networks, Machines, 11(10). doi:
10.3390/machines11100952.

Buzkhar, I. and et. al. (2023). Design and Implementation of Hydric Controller for
Two Wheeled Robot, IJEIT on Engineering and Information Technology,
11(1).doi: https://doi.org/10.36602/ijeit.v11il.5

Gnan, H. and et. al. (2022). Real Time Classification for Robotic Arm Control
Based Electromyographic Signal, 2022 IEEE 2st International Maghreb Meeting

Journal of Engineering Research ~ (University of Tripoli)  Issue (40) November 2025 75



[17]

[18]

[19]
[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]
[29]
[30]
[31]
[32]

[33]

of the Conference on Sciences and Techniques of Automatic Control and Computer
Engineering (MI-STA2022), Sabrata, Libya. doi: 10.1109/MI-
STA54861.2022.9837703

Desai, R. and Muthuswamy, S. (2021). A forward, inverse kinematics and
workspace analysis of 3RPS and 3RPS-R parallel manipulators, Iranian Journal of
Science and Technology, Transactions of Mechanical Engineering, 45(2). doi:
10.1007/S40997- 020-00346-9.

Attawil, I. and et. al. (2024). Enhancing Lateral Control of Autonomous Vehicles
through Adaptive Model Predictive Control, 2024 IEEE 4th International Maghreb
Meeting of the Conference on Sciences and Techniques of Automatic Control and
Computer  Engineering  (MI-STA),  Tripoli, Libya. doi: 10.1109/MI-
STA61267.2024.10599733

Crane, C. and Dufty, J. (2009). Kinematic analysis of robot manipulators, (Book).
Agustian, I. and Faurina, R. (2021). Robot manipulator control with inverse
kinematics PD- pseudoinverse Jacobian and forward kinematics Denavit
Hartenberg, Journal of Engineering and Technology, 21(1). doi:
10.14203/JET.V21.8-18.

Talli, A. and Marebal, D. (2021). Kinematic analysis and simulation of robotic
manipulator based on RoboAnalyzer, in Book Chapter. doi: 10.1007/978-981-16-
0336-5_6.

Antonov, A. (2023), Inverse kinematics of a 5-DOF hybrid manipulator,
Automation and Remote Control, 84(3). doi: 10.1134/S0005117923030037.

Lan, L. and Yang, W. (2020). Learning the kinematics of a manipulator based on
VQTAM, Symmetry, 12(4). doi: 10.3390/SYM12040519.

Tripathi, A. and Gopaliya, S. (2023). Study of kinematics for industrial robots, in
Book Chapter. doi: 10.1007/978-981-99-2349-6 23.

Singh A. and Singla, A. (2016). Kinematic modeling of robotic manipulators,
Proceedings of the National Academy of Sciences, India — Section, 87(3) ,303-319.
doi: 10.1007/S40010-016-0285-X.

Abougarair, A. (2023). Adaptive Neural Networks Based Optimal Control for
Nonlinear System , 2023 IEEE 3rd International Maghreb Meeting Stabilizing of
the Conference on Sciences and Techniques of Automatic Control and Computer
Engineering (MI-STA2023), Libya. doi: 10.1109/MI-STA57575.2023.10169340.
Elmolihi, A., et al. (2020). Robust Control and Optimized Parallel Control Double
Loop Design for Mobile Robot, I4AES International Journal of Robotics and
Automation (IJRA), 9(3). doi: http://doi.org/10.11591/ijra.v9i3.pp160-170.

Li, J. and Wang, Z. (2024). Transformer-based inverse kinematics for complex
manipulators, IEEE Robotics and Automation Letters, 9(2), pp. 1234-1241.

Chen, X. and Zhang, Y. (2023). Geometric inverse kinematics with deep learning
for roboticmanipulators, Robotics and Autonomous Systems, 159, 104289.

Craig, Introduction to Robotics: Mechanics and Control, Reading, MA: Addison-
Wesley, 1990.

Paul, R.(1982). Robot Manipulators: Mathematics, Programming, and Control.
Cambridge, MA: MIT Press.

Cubero, S. (2007). Industrial Robotics: Theory, Modelling and Control. Germany:
Pro Literatur Verlag.

Pires, N. (2006). Robot manipulators: Kinematic analysis and control, Industrial
Robot, 33(4), 296-302. doi: 10.1007/978-0-387-23326-0 2.

Journal of Engineering Research ~ (University of Tripoli)  Issue (40) November 2025 76


https://doi.org/10.1109/MI-STA61267.2024.10599733
https://doi.org/10.1109/MI-STA61267.2024.10599733
https://doi.org/10.1109/MI-STA54861.2022.9837703
https://doi.org/10.1007/S40997-020-00346-9
https://doi.org/10.1007/S40997-020-00346-9
https://doi.org/10.1007/S40997-020-00346-9
http://doi.org/10.11591/ijra.v9i3.pp160-170
https://doi.org/10.14203/JET.V21.8-18
https://doi.org/10.3390/SYM12040519
https://doi.org/10.1007/978-0-387-23326-0_2

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Niku, S. (2001). Introduction to Robotics: Analysis, Systems, Applications. Upper
SaddleRiver, NJ: Prentice Hall.

Dinh, B. and Dunnigan, M. (2014). A radial basis function network approach to
approximate the inverse kinematics of a robotic system, International Journal of
Modelling Identification and Control, 21(2), 113-124.
doi: 10.1504/1JMIC.2014.060005.

Wen, J. and Kreutz-Delgado, K. (2000). Neural network control of robot
manipulators, IEEE Transactions on Neural Networks, 11(3), 567-579.

Karlik, B. and Aydin, S. (2000). An improved approach to the solution of inverse
kinematics prob- lems for robot manipulators, Engineering Applications of
Artificial Intelligence, 13(2), 159-164. doi:10.1016/S0952-1976(99)00050-0.
Abougarair, A. (2018). Virtual Reality Animation of ANFIS Controller for Mobile
Robot Stabilization, Journal of Engineering Research, 25. https://jer.ly/PDF/Vol-
25-2018/JER-08-25.pdf.

Abougarair, A. (2019). Model Reference Adaptive Control and Fuzzy Optimal
Controller for Mobile Robot, Journal of Multidisciplinary Engineering Science and
Technology,  6(3),  9722-9728.  Germany.  https://www.jmest.org/wp-
content/uploads/JMESTN42352870.pdf.

Abougarair, A. (2020). Neural Networks Identification and Control of Mobile
Robot Using Adaptive Neuro Fuzzy Inference System, ICEMIS'20: Proceedings of
the 6" International Conference on Engineering & MIS 2020,
https://doi.org/10.1145/3410352.3410734.

Gnan, H. et al. (2021). Implementation of a Brain-Computer Interface for Robotic
Arm  Control, (MI-STA2021),  Tripoli, Libya. doi: 10.1109/MI-
STAS52233.2021.9464359.

Edardar, M. et al. (2021). Tracking Control with Hysteresis Compensation Using
Neural Networks, (MI-STA2021), Libya. doi: 10.1109/MI-
STAS52233.2021.9464365.

Aburakhis, M. et al. (2022). Performance of Anti-Lock Braking Systems Based on
Adaptive and Intelligent Control Methodologies, Indonesian Journal of Electrical
Engineering and Informatics (IJEE). doi: 10.52549/ijeei.v10i3.3794.

Ellafi, M. et al. (2023). Analysis of Mobile Accelerometer Sensor Movement Using
Machine  Learning  Algorithms,  (MI-STA2023).  doi: 10.1109/MI-
STAS57575.2023.10169214

Ma’arif, A. et al. (2024). Model Predictive Control for Optimizes Battery Charging
Process, 2024 IEEE 4™ International Maghreb Meeting of the Conference on
Sciences and Techniques of Automatic Control and Computer Engineering. doi:
10.1109/MI-STA61267.2024.10599662.

Bakouri, M. et al. (2024). Optimizing cancer treatment using optimal control
theory, AIMS Mathematics, 9(11), 31740-31769. doi: 10.3934/math.20241526.
Abougarair, A. (2022). Position and Orientation Control of a Mobile Robot Using
Intelligent Algorithms Based Hybrid Control Strategies, Journal of Engineering
Research  (Libya), 34, 67-86. https://jer.ly/PDF/Vol-34-2022/JER-05-34-
Abstract.php?f=a.

Alaktiwi, A. etal. (2025). Adaptive Control Approach for Optimized Lane Keeping
in Autonomous Vehicles, 4(1). doi.org/10.51984/sucp.v411.3956.

Journal of Engineering Research ~ (University of Tripoli)  Issue (40) November 2025 77


https://www.researchgate.net/journal/International-Journal-of-Modelling-Identification-and-Control-1746-6180?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicG9zaXRpb24iOiJwYWdlSGVhZGVyIn19
https://www.researchgate.net/journal/International-Journal-of-Modelling-Identification-and-Control-1746-6180?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicG9zaXRpb24iOiJwYWdlSGVhZGVyIn19
https://doi.org/10.1504/IJMIC.2014.060005
http://doi.org/10.11591/ijra.v9i3.pp160-170
https://doi.org/10.1016/S0952-1976(99)00050-0
https://jer.ly/PDF/Vol-34-2022/JER-05-34-Abstract.php?f=a
https://jer.ly/PDF/Vol-34-2022/JER-05-34-Abstract.php?f=a
https://doi.org/10.51984/sucp.v4i1.3956

[49] Zrigan, A. (2025). Integration of MPC and SOLADRC to Optimize PWR
Performance, Journal of Pure and Applied Sciences (JOPAS), 4(1). doi:
10.51984/SUCP.V411.3870.

[50] Guma, W. et al. (2024). Implementation and Performance Evaluation of Intelligent
Techniques for Controlling a Pressurized Water Reactor, Journal of Automation,
Mobile Robotics and Intelligent Systems, 4, 71-85. doi.org/10.14313/JAMRIS/4-
2024/32.

Journal of Engineering Research ~ (University of Tripoli)  Issue (40) November 2025 78


https://scholar.google.com/citations?view_op=view_citation&hl=en&user=G63wZ6UAAAAJ&sortby=pubdate&citation_for_view=G63wZ6UAAAAJ:XiSMed-E-HIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=G63wZ6UAAAAJ&sortby=pubdate&citation_for_view=G63wZ6UAAAAJ:XiSMed-E-HIC
https://doi.org/10.14313/JAMRIS/4-2024/32
https://doi.org/10.14313/JAMRIS/4-2024/32

	ABSTRACT
	INTRODUCTION
	THE HP3 MANIPULATOR
	Advantages Over Competing Robots

	FORWARD/DIRECT AND INVERSE KINEMATICS
	Forward/Direct Kinematics
	Denavit and Hartenberg Algorithm
	Forward Kinematics of the HP3 Manipulator Using the DH Algorithm

	EXPERIMENTAL RESULTS: FORWARD KINEMATICS OF HP3 MANIPULATOR
	Inverse Kinematics
	Inverse Kinematics: Solving for 𝜽 Using Geometric and Analytic Methods
	Inverse Kinematics: Solving for ,𝜽-𝒍. and ,𝜽-𝒖. Using RBF Artificial Neural Network
	Inverse Kinematics: Solving for ,𝜽-𝒓.,,𝜽-𝒃. and ,𝜽-𝒕. Using Geometric and Analytic Methods

	EXPERIMENTAL RESULTS: INVERSE KINEMATICS OF HP3 MANIPULATOR
	1. Network Input Vector Selection
	2. Training and Testing Data Generation
	3. RBF-ANN Architecture and Training Algorithm

	CONCLUSION
	FUTURE WORK
	References

